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RESEARCH HIGHLIGHT RESULTS

§ Gait phase estimation for the powered prosthesis was 
proposed using machine learning.

§ Network architecture with five LSTM layers successfully 
estimated gait phase

Importance of gait phase 
§ Human walking can be divided into heel-strike, flat-foot, 

push-off, and toe-off [1]. 
§ The gait phase is widely used to control powered assistive 

devices like prosthetics and exoskeletons. The controller’s 
desired trajectories or gains are modified depending on 
the gait phase.

Machine learning for gait phase estimation
§ Long Short-Term Memory (LSTM) has been widely used in 

the field of translation, text, and time series prediction 
with continuous properties since past events have a direct
ed cycle that can affect future results.

§ Since the gait phase consists of a series of data, LSTM is a 
suitable method.

INTRODUCTION

POWERED PROSTHETIC SYSTEM

Fig. 2 Wearable sensor set for the gait phase estimation: 2 
IMUs for the thigh and torso, and a force sensor for the heel

Powered Transfemoral Prosthesis
§ AMPRO II, the 2nd generation of custom-built A&M 

powered transfemoral prosthesis, has two actuations at 
ankle and knee. 

§ So far, the gait phase has been estimated by a phase 
variable calculated from a global thigh angle, which is 
measured from a 9-axis IMU (MPU9150, SparkFun
Electronics, USA) on the L-shape simulator (for the able-
bodied subject) of the prosthesis

§ However, the gait phase estimation can be more robust 
and accurate for more reliable control. This necessitates 
the investigation of the gait phase estimation using 
machine learning techniques.
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Experiment subject
§ A healthy male (31 years, height 175cm, weight 75kg)
§ Using equipment to track the gait phase on the left leg

Experiment environment
§ On a flat-ground treadmill with four different walking 

speed (0.25, 0.5, 1.0, 1.25, 1.5, 1.75 m/s)
Experiment data recording
§ For each trial, 20 gait cycles were recorded.
§ The kinematic data (i.e., position, velocity of thigh and 

torso) were captured via 2 IMU.
§ The kinetic data (i.e., force at the heel and toe) was 

measured from force sensors underneath a foot.

EXPERIMENTAL SETUP

CONCLUSIONS

It was observed that
§ In this study, we proposed the networks using LSTM for the 

gait phase estimation.
§ At a speed of 1.25m/s or higher, the network performed 

good estimation.
§ However, when the speed was slow, the networks 

performance tended to deteriorate.

Fig. 1 Custom-built robotic transfemoral prosthesis, AMPRO II

§ The gait cycle was accurately predicted at 1.25 m/s. 
§ However, there were a few inaccuracies in predicting the gait 

phase during the stance phase at lower walking speeds. 
§ Since the model was trained by the data of walking speed 

ranging from 0.75 m/s to 1.25 m/s, inaccurate predictions can 
be expected at slow speeds such as 0.25 m/s. 

§ Slow walking speed can increase sensor variation, which can 
cause prediction errors.

CONTROL FRAMEWORK

Gait phase definition and data setup
§ In order to train the neural network, it is required to label 

the ground truth as a reference. We used linear 
interpolation method.

§ The linear interpolation method used a threshold of the 
heel sensor data to obtain HS points. All points between 
HS points were then linearly interpolated. Therefore, one 
gait cycle increases linearly from 0 to 1, resets to 0 at the 
end of one cycle.

§ The refined data consisted of 200 data points per gait 
cycle. 

§ To verify the model, we collected data for 400 steps at 
various speeds (0.25 m/s to 1.75 m/s). 

Networks architecture
§ Our network architecture consists of five layers: LSTM 

(256), bidirectional LSTM (128), LSTM (128), and 
bidirectional LSTM (64), and fully connected layer.

§ To prevent overfitting, each layer implemented a dropout 
rate of 0.1 and recurrent dropout rate of 0.4. 

§ We used the Adam optimizer with initial learning rate = 
0.001, momentum = 0.9, batch size = 128, epochs = 30, 
and mean squared error (MSE) as the loss function [2, 3].

§ To train the network’s model, we prepared a dataset of 
100 steps at three walking speeds (0.75 m/s, 1m/s, and 
1.25 m/s). 

Fig. 4 Gait cycle according to low walking speed (a) and hight
walking speed (b). Dotted line is ground truth and solid line is
predicted cycle.

FUTURE WORKS

§ We will train the network by transforming the label to polar 
coordinates from linear interpolation.

§ Also, we will use the trained gait estimation model to 
control a powered transfemoral prosthesis.

Fig. 3 Gait cycle with important kinematic changes

IMU Setting
§ As it is shown in Figure 2, two IMUs are located at the 

subject's back and thigh, respectively, and a force sensor 
is at under the heel. During the walking experiment, each 
sensor data was recorded in the micro-processor in 200 
Hz.


