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Preferred Jacobian Differentiation and Direct Collocation Methods for an
Efficient and Accurate Walker Gait Optimization
Veronica Knisley, Kwonseung Cho ■, Kang-Woo Lee ■, and Pilwon Hur* ■

Abstract: Devices based on walker robotics research sometimes require a reference trajectory for the control sys-
tems of the devices to track. One valuable class of methods used to find an optimal reference trajectory is direct
collocation, but even after selecting a method like direct collocation, several optimization design decisions remain.
In order to determine the most desirable optimization settings, 600 optimizations were performed for the trajectory
of a two degree-of-freedom (DOF) compass gait walker, and 200 optimizations were performed for a five-DOF link
walker. These runs evaluated various combinations of optimization settings, including: numerical vs. symbolic vs.
automatic differentiation; trapezoidal vs. Hermite Simpson collocation; numerical vs. symbolic calculation of joint
accelerations; and inclusion or exclusion of joint accelerations in the decision variables. The different generated
gaits were then compared in terms of computational efficiency and accuracy. The results showed that including
joint accelerations as decision variables eliminated alternative gaits but increased computational complexity and
variability. Symbolic acceleration evaluation was preferable when automatic differentiation was excluded. Auto-
matic differentiation was shown to be significantly faster than the other two differentiation methods for both walk-
ing models. In addition, Hermite-Simpson collocation, although slower than trapezoidal, was the more accurate of
the two approaches. These results can be applied to the derivation of optimal reference joint trajectories in future
robotics applications.

Keywords: Computational efficiency, direct collocation, Jacobian, trajectory optimization.

1. INTRODUCTION

When designing robots to traverse challenging terrains
[1] or developing wearable robotics to assist users with
walking [2-5], it is crucial for roboticists to ensure that
these systems follow a predetermined trajectory. This tra-
jectory must incorporate desired joint angles and veloc-
ities during each step while complying with any physi-
cal limitations imposed by the system, environment, or
user. To create such a gait trajectory, a variety of tech-
niques are utilized. One such method is the heuristic ap-
proach, in which a continuous function is generated by
passing through designated control points using spline
or smoothing curves [2,6-8]. In situations where con-
tact is crucial, impedance control is employed for ter-
rain adaptation, accompanied by appropriate finite state
machine rules [9-11]. Alternative approaches use oscilla-
tors or phase variables to account for internal or external
intentions, such as recognizing human movement inten-
tion [12-16]. These techniques rely on rhythmic move-

ment patterns to generate the gait trajectory. Ultimately,
formulating a trajectory optimization problem is an effec-
tive method for producing a gait trajectory and optimizing
the control input of the trajectory.

Trajectory optimization is one type of continuous-time
optimal control problem (OCP). For practical situations
like this, however, transcribing the OCP into a nonlinear
program (NLP) allows the problem to be solved more effi-
ciently. In simple cases, techniques called shooting meth-
ods can achieve this [17,18]; however, for a complex pro-
cess like walking robots, direct collocation is a fairly pop-
ular choice [1,19-21]. In direct collocation, various points
along the trajectory are taken to be collocation points. The
system dynamics only need to be satisfied at these spe-
cific points in time. In this specific study, the collocation
points are evenly spaced in time, but this is not required.
After solving the NLP, polynomial splines can be used to
approximate a continuous-time trajectory [22].

The dynamical constraints at the collocation points can
be expressed as
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xi+1 − xi =
∫ ti+1

ti
f (x,u, t)dt, (1)

where x is one of the states, i is the index of a given col-
location point and f (x,u, t) gives the system dynamics.
Since we do not actually have a continuous expression for
these dynamics, it is necessary to approximate this inte-
gral using a collocation method. The lower-order collo-
cation method used in this study is trapezoidal colloca-
tion (TPZD); with this approach, the system dynamics and
states are represented by linear and quadratic splines, re-
spectively. Integrals are approximated as

xi+1 − xi =
h
2
( fi + fi+1) , (2)

where h is the time step between two consecutive colloca-
tion points. Hermite-Simpson collocation (H-S) approx-
imates the system dynamics and states one order higher
than TPZD. With this method, integrals are approximated
by

xi+1 − xi =
h
6

(
fi +4 fi+ 1

2
+ fi+1

)
, (3)

where

xi+ 1
2
=

1
2
(xi + xi+1)+

h
8
( fi − fi+1). (4)

Even after selecting direct collocation method, how-
ever, there are still multiple implementation decisions
which can be made. For example, Chao and Hur [19]
included joint accelerations, in addition to the standard
joint positions and velocities, in their set of decision vari-
ables in order to increase the problem’s sparsity. Some re-
searchers, such as Nie and Kerrigan [23] and Pardo et al.
[24], utilized different collocation methods in their opti-
mizations. In the case of the latter, Hermite-Simpson col-
location was shown to be a far more accurate method than
the lower-order trapezoidal collocation method.

Implementation strategies in nonlinear programming
(NLP) extend beyond problem formulation and often re-
quire user-defined gradients and Jacobians. Three pri-
mary differentiation techniques—symbolic differentiation
(SD), numerical differentiation (ND), and automatic dif-
ferentiation (AD)—offer distinct trade-offs in terms of ac-
curacy, computational speed, and implementation com-
plexity. SD provides exact derivatives using tools such as
MATLAB or Mathematica but becomes impractical for
highly complex expressions. ND employs finite differ-
ences, making it simpler to implement, though at the cost
of reduced accuracy. AD combines the advantages of both
methods, delivering high accuracy without the burden of
storing large symbolic expressions [25].

Comparative studies have evaluated these techniques
across various robotic applications. Giftthaler et al. [26]
reported that AD outperformed ND in computational

speed, while ND exhibited lower accuracy, when applied
to the quadruped robot HyQ and a robotic manipulator.
Durrbaum et al. [27] found AD to be more scalable in
high-dimensional systems, whereas SD showed superior
performance in lower-dimensional scenarios. Falisse et al.
[28] further demonstrated that AD was both faster and
more robust than ND in a biomechanical simulation con-
text.

Despite these insights, the effects of differentiation
methods on gait optimization for robotic (non-musculo-
skeletal) walkers remain largely unexplored. This gap is
notable, given that computational efficiency is particu-
larly critical in such systems [2,29]. Moreover, most prior
work has focused on the isolated effects of individual
factors, without considering the compounded impact of
multiple implementation choices. Recent literature under-
scores the importance of examining trade-offs—such as
those between accuracy and efficiency—when designing
optimization frameworks [30,31].

The goal of this study [32] is to examine the effects
of different combinations of gradient and Jacobian differ-
entiation methods, collocation techniques, and treatment
of joint accelerations on the efficiency of walker trajec-
tory optimization and the accuracy of the resulting optimal
gaits. Two different walking models, the two degree-of-
freedom (DOF) compass walker and the five-DOF kneed
walker with torso, were examined. All investigations
were carried out within an offline trajectory-optimization
framework—no real-time solving was attempted. The in-
tention behind this study is to help walker robotics re-
searchers, and potentially others, to generate the most ac-
curate trajectories in the least amount of time, likely taking
into account tradeoffs between these two desired charac-
teristics.

The rest of this paper is organized as follows: The Meth-
ods section describes the NLPs formed for each walker, as
well as how these were implemented in IPOPT, which is
an interior-point solver for nonlinear programs [33], and
how the simulation experiment was structured. The Re-
sults section presents the most important pieces of data
given in the experiment, while the Discussion section in-
terprets these results. Lastly, the Conclusion and Future
Work section summarizes the key findings of this study
and suggests future areas of exploration related to this
topic.

2. METHODS

2.1. Walking model
The first walking model which was used in this study

was the compass walker [34,35], as shown in Fig. 1(a).
This walking model has two degrees of freedom, which
in this case are represented as the absolute angles of the
stance and swing legs with respect to the vertical. Addi-
tionally, the presented model is underactuated, as its only



Preferred Jacobian Differentiation and Direct Collocation Methods for an Efficient and Accurate Walker Gait ... 1553

(a) Compass walker.

(b) Five-link walker.

Fig. 1. Walking models.

actuator is at the hip. The masses of each leg, as well as
the hip, are point masses, and the walker’s feet are point
feet. Many of the parameters used are the same as those in
[34].

The five-link walker [36] has five degrees of freedom
and four degrees of actuation, as illustrated in Fig. 1(b).
For this model, since the masses in each link are dis-
tributed, the links have inertias Ii, where i is the link num-
ber. Some of the inertial parameters used are based on the
results found in [37].

2.2. Nonlinear program formulation
The general optimization formula for direct collocation

is shown in (5).

x∗ = argmin
x

J(x),

s.t. xlb ≤ x ≤ xub,

Heq(x) = 0,

Hiq(x)≥ 0, (5)

where the system consists of M collocation points. For all
runs, the decision variable x defined as x = [qi, q̇i, τi, ∆t]
for i ∈ [1, 2, · · · , M]. For some tests with the five-link
walker, the accelerations of all joints at all collocation
points (q̈i) were also included in the decision variables.

xlb and xub are the lower and upper bounds for x, while
Heq(x) and Hiq(x) represent the equality and inequality
constraints.

2.2.1 Objective function
There are different objective functions which can be

used in the trajectory optimization of a walker, such as
cost of transport, which takes into account power con-
sumption and distance traveled; input torque squared [22];
some combination of the two [19]; or a robust modifica-
tion of these [1]. In this study, the square of input torques
is used as the cost function. The continuous-time version
of this function is

J(x) =
∫ T

0

m

∑
i=1

τ
2
i (t)dt, (6)

where τi is the torque of actuated joint i and the integral is
taken over the entire period T of a step. Since the walking
models are underactuated, m = 1 for the compass walker,
and m = 4 for the five-link walker. This integral must be
approximated using a collocation method.

2.2.2 Constrained dynamics
Both walker walking models used in this study are hy-

brid systems, which include phases of both continuous and
discrete dynamics [38]. The continuous dynamics are de-
scribed with the Euler-Lagrange equations of motion

M(q)q̈+C(q, q̇)q̇+G(q) = Bτ, (7)

where M is a 2× 2 inertia matrix, C is a 2× 2 Coriolis
and centrifugal force matrix, G is a 2× 1 gradient of the
system’s potential energy, B is a 2×1 vector mapping the
input of the system to each state, and τ is a scalar repre-
senting the hip torque.

2.2.3 Boundary constraints
There is also an assumed inelastic collision when the

heel of the swing leg hits the ground. Given the pre-impact
final velocities q̇−e , the post-impact velocities q̇+e and im-
pact forces F can be calculated using (8)[

Me −JT

J 0

](
q̇+e
F

)
=

(
Meq̇−e

0

)
, (8)

where Me is the 4×4 inertia matrix for a compass walker
with a free stance tip, and J is the 2× 4 Jacobian matrix
mapping the tip of the swing leg to each state.

2.2.4 Additional constraints
Additional constraints are needed in order to determine

the optimal trajectory of the walking models. Contact con-
straints are essential to model contact conditions. In the
contact constraints, constraints for the ground reaction
forces and friction at the ground are introduced. The fric-
tion cone model, based on Coulomb friction, ensure that
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the contact forces remain within reasonable range. The
contact constraints are expressed as in (9)

µλz −∥λx∥ ≥ 0,

φz(q) = 0,

Jq̇ = 0. (9)

Continuity constraints ensure the gait generated must
be periodic, meaning that the initial and final positions of
each state must mirror each other.

R(qinitial)−q f inal = 0,

xtip(q f inal)− xtip(qinitial)≥ ddim, (10)

where R is the relabeling matrix to swap joint variables
between left and right leg. dim is the minimum horizontal
travel distance that ensures an acceptable step length by
constraining the initial leg-tip distance within a prescribed
range.

2.3. Implementation of tested settings
The objective of this study was to compare the optimal

walking gaits generated using different collocation meth-
ods (TPZD vs. H-S), Jacobian and gradient differentiation
methods (ND vs. SD vs. AD), and dynamics evaluation
methods (numerical vs. symbolic) in the NLP setup. Addi-
tionally, for the five-link walker, some runs included joint
accelerations in the decision variables. This was because
of concerns about the inversion of the dynamical model’s
inertia matrix. As is implied by (7), the joint accelerations
in the model are calculated by

q̈ = M(q)−1(−C(q, q̇)q̇−G(q)+Bτ). (11)

In practice, this equation is implemented in MATLAB
using the backslash operator (\), which avoids explicit ma-
trix inversion and provides a more numerically stable so-
lution to the linear system.

A symbolic matrix inversion for a system of more than
just a few dimensions will yield an extremely complex
expression, and numerical evaluation of the matrix could
introduce inaccuracies. Including the accelerations in the
decision variables eliminates the need to compute the in-
verse of the inertia matrix, and comparing all three options
for the acceleration calculations will show how speed and
consistency compare in each case.

Table 1 summarizes the different settings applied for
each NLP setup. ADVs refers to “accelerations in decision
variables.” All tests on the five-link walker used trape-
zoidal collocation (TPZD), and only the differentiation
method for the collocation constraints and the acceleration
calculation method were modified. One of the tested con-
figurations, originally planned to use numerical dynamics
evaluation, was changed to use symbolic dynamics due to

Table 1. Experimental combinations of collocation meth-
ods, differentiation methods, and acceleration
calculation methods.

Model Method

Collocation Differentia-
tion

Acceleration

Compass
walker

H-S ND

Symbolic

TPZD ND
H-S SD

TPZD SD
H-S AD

TPZD AD

Five-link
walker

TPZD

SD Sym Dyn
ND Sym Dyn
ND Num Dyn
ND ADVs
AD Sym Dyn

H-S: Hermite-Simpson collocation method, TPZD: Trapezoidal
collocation method, ND: Numerical differentiation, SD: Sym-
bolic differentiation, AD: Automatic differentiation, Sym Dyn:
Symbolic dynamics evaluation, Num Dyn: Numerical dynamics
evaluation, ADVs: Accelerations in decision variables.

the large size and complexity of the Jacobian file gener-
ated with the numerical approach. As a result, this config-
uration used TPZD, automatic differentiation (AD), and
symbolic dynamics.

It is also important to note that more combinations of
differentiation and acceleration calculation methods could
be tested. However, the selected combinations represent
practical and commonly used configurations. For exam-
ple, it would be difficult to use symbolic differentiation
without a symbolic expression for the system dynamics,
so that particular combination was not tested.

Collocation methods: The two collocation methods
described in the introduction section were applied to the
compass walker. For TPZD, (2) was used in both the ob-
jective function and collocation constraints. h was taken
to be the time between two consecutive collocation points,
although twice this value was used in the objective func-
tion. When TPZD was used with the five-link walker, h
was always the time between two points. For all runs, h
was taken to be a constant value, although this is not re-
quired.

The collocation constraints for H-S used (3). However,
due to the indexing in MATLAB, i+ 1 became i+ 2 and
i+ 1

2 became i+ 1. Additional constraints were included
on the states and control values at the midpoints. The for-
mer were based on (4), while the latter were enforced by
constraining the midpoint controls to fall along quadratic
splines.

Differentiation methods: Three differentiation meth-
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ods—numerical differentiation (ND), symbolic differen-
tiation (SD), and automatic differentiation (AD)—were
implemented to compute the constraint Jacobian and the
gradient of the objective function. ND employed a cen-
tral difference finite approximation by evaluating the con-
straints with forward- and backward-perturbed decision
variables, modifying one variable at a time. A custom
MATLAB function, get_numerical_diff(), was developed
to automate this process for most applications, with the
exception of the H-S + ND compass tests and all gra-
dient computations, which followed similar procedures
implemented in separate functions. To leverage the spar-
sity of the Jacobian, only the derivatives corresponding to
nonzero elements (i.e., relevant rows and columns) were
computed.

For SD, symbolic expressions of the constraints and
the objective function were first constructed using MAT-
LAB’s symbolic class. Their derivatives were then com-
puted using the diff() function and saved as an .m-file via
the matlabfunction() command. The corresponding row
and column indices were stored in a separate .mat-file.
During each optimization iteration, the decision variables
were passed to the saved derivative function, the index
file was loaded, and the sparse Jacobian matrix was con-
structed using the sparse() function.

AD was implemented using the ADiGator package
(v1.5) [39]. The decision variables and model parameters
were formatted using ADiGator’s input preparation func-
tions. Key ADiGator utilities were employed to generate
Jacobian and gradient functions compatible with IPOPT.
During optimization, the inputs were provided as struc-
tured data in ADiGator’s required format, and the result-
ing derivative information—returned as structured out-
puts—was used to extract row, column, and value arrays
for the sparse matrix.

In addition to supplying the Jacobian, IPOPT requires
a sparsity pattern matrix, where nonzero entries are indi-
cated by ones. For the compass walker, this pattern was
symbolically derived, with all decision variables set to one
for the midpoint input torque constraints. For the five-link
walker, the sparsity pattern was primarily obtained numer-
ically, except for collocation constraints, which followed
the same method as their respective Jacobian computa-
tions.

Handling accelerations: Computing acceleration is
important since it describes the dynamic behavior of the
walker. For the five-link walker, the accelerations of each
joint at the collocation points were evaluated in three dif-
ferent ways: symbolically, numerically, and via introduc-
tion of extra decision variables. As mentioned previously,
this is a necessary test to include because of the concerns
with the inversion of a large inertia matrix. Even though
the symbolic matrix inverse would be the most accurate,
the expression will likely be extremely complex, meaning

it would be difficult for even a computer to calculate and
could result in an extremely large file size. Numerical “in-
version,” or to be more accurate, MATLAB’s left division,
can avoid this issue. However, it could potentially intro-
duce numerical errors. Lastly, the accelerations were ex-
plicitly included in the decision variables. In this case, the
dynamics constraints were satisfied by solving the Euler-
Lagrange Equation explicitly.

2.4. Simulation experimental setup
To ensure a certain level of accuracy in this study, a

baseline gait was determined for each walking model and
compared to the corresponding optimal gait obtained from
the experiments. The baseline for the compass walker was
found using a passive forward simulation initiated from
a fixed point on the walker’s passive periodic trajectory
on a three-degree downslope.The simulation was carried
out with precision up to four decimal places. In contrast,
the baseline for the five-link walker was obtained via an
optimization process using IPOPT. A denser set of collo-
cation points, 101, was used for this run in order to help
it converge to the continuous-time gait. Additionally, to
enhance accuracy, both accelerations and the Jacobians of
the collocation constraints were evaluated symbolically.

The sum of the squared deviation between the value of
each state on the baseline and on the experimental gait at
certain percentages of gait completion were recorded.

All optimizations were performed using the mexIPOPT
interface [40] in MATLAB (r2019a, MathWorks, Natick,
MA, USA) on a Dell Latitude E6540 laptop. The solver
mumps was used. In trajectory optimization for walker
robots using direct collocation, the number of colloca-
tion points is crucial in balancing computational efficiency
and solution accuracy. 11 and 21 collocation points were
selected for comparison to evaluate this balance effec-
tively. This choice aligns with standard walking motion
generation practices, where 20 to 50 collocation points
are typically used per half gait cycle (i.e., a single step)
[20]. For the compass walker, one-hundred optimizations
were completed with a randomized initial guess for each
of the six test settings. Eleven collocation points were
used, which means that there were eleven total points with
TPZD and twenty-one total points with H-S. For the five-
link walker, twenty optimizations were run with random-
ized initial guess for each of the five settings at two levels
of refinement: eleven and twenty-one collocation points.

After running each optimization, plots were generated
for spline-interpolated states and control signals, as well
as walking tiles. Additionally, key pieces of information
such as the optimal objective value, required CPU time,
and baseline deviation “accuracy” measures were pro-
grammed to automatically be entered into an excel spread-
sheet, sorted by the test setting.

The averages and sample standard deviations for the
recorded quantities were calculated within Excel. Prior to
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conducting statistical comparisons, normality and equal-
ity of variance tests were performed. The data in this
study did not satisfy the assumptions of normality and
homogeneity of variance, necessitating the use of non-
parametric statistical methods.

In order to determine whether there were statistical dif-
ferences between the means of data generated using dif-
ferent collocation, differentiation, or dynamics evaluation
methods, Kruskal-Wallis tests were performed. If a signif-
icant difference was detected, Mann-Whitney U tests were
conducted as a post-hoc analysis, with Bonferroni correc-
tion applied to account for multiple comparisons. A sig-
nificance level of α = 0.05 was used, and p-values at or
below this threshold were considered statistically signifi-
cant.

3. RESULTS

3.1. Compass walker
Based on the optimization settings for the compass

walker, one hundred optimizations were completed with
randomized initial guesses for each of the six settings,
which varied in collocation methods, differentiation ap-
proaches, and acceleration treatments. While most of the
generated walking gaits generally followed the baseline
trajectory, some converged toward an alternative gait. The
H-S + ND and TPZD + ND settings produced the highest
number of alternative gaits, each generating 17 instances.
The H-S+SD setting resulted in 14 alternative gaits, fol-
lowed by TPZD + SD and TPZD + AD, each yielding 13
instances. The H-S + AD setting generated the fewest al-
ternative gaits, with 8 occurrences. The data was analyzed
both with and without these alternative gaits.

The key findings pertain to computational efficiency.
Statistical tests showed that, when comparing individual
settings, all configurations exhibited statistically signif-
icant differences in both CPU Time and average CPU
Time per iteration, except for the cases of H-S and ND
(Fig. 2(a)).

In the comparison of setting combinations, there was no
significant difference in CPU Time for the H-S + ND and
H-S + SD combinations. Similarly, for average CPU Time
per iteration, all combinations exhibited significant differ-
ences except for H-S + SD and TPZD + SD (Fig. 2(b)).

This study evaluated accuracy based on deviation from
the expected baseline. After excluding outliers, the analy-
sis revealed statistically significant differences among the
collocation methods (p < 0.001). The H-S method pro-
duced errors up to 1,000 times smaller than those of the
TPZD method. In contrast, the differentiation methods
showed no statistically significant differences (Fig. 3).

3.2. Five-link walker
Similar data were collected for the five-link walker,

with twenty optimization runs performed for each of the

(a) Effect of individual factors.

(b) Effect of factor combinations.

Fig. 2. Comparison of computational performance based
on collocation and differentiation methods in com-
pass walker optimizations.
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Fig. 3. Squared error with respect to the baseline gait for
compass walker runs without alternative gaits. The
variables q1 and q2 correspond to the angles as de-
scribed in Fig. 1(a).

five settings and two collocation point configurations. As
with the compass walker, some runs converged to alter-
native gaits. However, not all alternative gait runs fol-
lowed the same trajectory. The number of alternative gaits
was generally lower with 21 collocation points compared
to 11, suggesting that increased constraints reduced lo-
cal minima. Among the tested settings, some conditions
resulted in more frequent alternative gaits, while others
showed little to no occurrence. A key finding is that no
alternative gaits were observed when joint accelerations
were included as decision variables, indicating that this
constraint significantly influenced gait variability.

The time-related measures (i.e., CPU Time and the av-
erage CPU Time per iteration) for the five-link walker are
shown in Fig. 4. It is important to note that the three differ-
entiation methods were not all used with the same dynam-
ics calculation methods. Specifically, the following five
combinations were compared: i) Sym + SD, ii) Sym + ND,
iii) Num + ND, iv) ADV + ND, and v) Sym + AD. These
combinations were chosen due to practical reasons. For
example, symbolic differentiation could not be performed
when the accelerations were computed numerically. ADV
+ ND was chosen to examine how adding the accelera-
tions as decision variables compares to calculating them
symbolically or numerically for the same differentiation

(a) Effect of individual factors.

(b) Effect of factor combinations.

Fig. 4. Comparison of computational performance based
on collocation, differentiation, and acceleration
methods in five-link walker optimizations.
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method (i.e., ii vs. iii vs. iv). Finally, Sym + AD was added
to investigate the effect of differentiation methods (i.e., i
vs. ii vs. v).

A comprehensive statistical analysis demonstrated that
computational performance is predominantly governed by
the choice of differentiation strategy and the inclusion
of acceleration as a decision variable, rather than by the
method employed for acceleration calculation. For both
11 and 21 collocation points, no statistically significant
differences were observed between symbolic and numer-
ical acceleration in terms of CPU time or CPU time per
iteration, thereby challenging prior assumptions regard-
ing the relative efficiency of these approaches. In contrast,
AD consistently yielded the lowest computational costs
across all conditions, significantly outperforming both SD
and ND at each collocation level (p < 0.001), while no
significant differences emerged between SD and ND. No-
tably, the inclusion of acceleration as a decision vari-
able led to a substantial increase in computational burden,
with p < 0.001 for both CPU and iteration time compar-
isons, underscoring the critical impact of model formula-
tion choices. These effects are illustrated in Fig. 4(a).

The comparison of factor combinations showed statisti-
cally significant differences in CPU Time and CPU Time
per iteration for 11 collocation points, except between
Sym + SD and Num + ND. For 21 collocation points, CPU
Time differed significantly across all combinations except
Sym + SD vs. Sym + ND and Num + ND vs. ADV + ND,
while CPU Time per iteration was significantly different
for all cases. Differences between 11 and 21 collocation
points were significant across all methods (Fig. 4(b)).

Whether including or excluding optimization runs
which resulted in an alternative gait, there were not many
differences between data sets with regards to accuracy.
The runs including the accelerations had a larger standard
deviation by an order of two to four than those excluding
them. This is shown in Fig. 5, which uses data for 11 col-
location points. On the other hand, these runs were also
the only ones where there were no alternative gaits.

4. DISCUSSION

The data for the compass walker show that AD was sig-
nificantly faster than the other two differentiation meth-
ods. This is likely due to the specific algorithms employed
in this method. TPZD was also shown to be faster than H-
S for each of the given differentiation methods. This was
likely due to the smaller number of constraints and deci-
sion variables required for those runs, as well as the fact
that the dynamics at the midpoints of segments did not
need to be calculated. Differences between the collocation
methods for the ND runs could have been affected slightly
by the slightly different implementations of ND, as de-
scribed in the Methods section. With regards to the accu-
racy of the compass gait simulations, and based on pre-

Fig. 5. Standard deviation of error with respect to baseline
gait for 11 collocation points (Fig. 1).

vious studies from other researchers [24], it was expected
that ND would be less accurate than the other two meth-
ods. However, this might not have been the case in this
experiment because of the small perturbation size used
(10−6) and the simplicity of the model.

Before concluding which methods would make the
ideal combination, it is also worthwhile to consider the
implementation difficulty of using different factors. Other
than the fact that there were fewer constraints needed for
the TPZD optimization than the H-S optimization, there
were very few differences between the implementation of
these two collocation methods. However, as described in
the Methods section, there were significant differences in
the implementation of the three different differentiation
methods. Due to the reuse of code, ND could be con-
sidered the easiest to implement. Also, since the ND im-
plementation would call the constraint or objective func-
tions, debugging only required changing the contents of
these functions in one location, which was not the case for
AD or SD. These latter two methods required the need to
re-derive the Jacobian functions each time the constraints
were modified. Although these two methods both involved
generating new functions for the Jacobians, the black-box
nature of ADiGator’s built-in functions, as well as their
speed, were benefits over SD. One benefit of SD over
AD, though, was that it did not require setting up special
classes of inputs, as only MATLAB’s standard symbolic
variables were needed.

The above discussion makes clear that some tradeoffs
are required in order to decide which settings are best.
Since AD is by far the fastest of the differentiation meth-
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ods tested, and since it is fairly simple to implement, it
would be the ideal choice. Although TPZD is faster than
H-S, both settings are so fast that time is perhaps not the
most critical factor here. Based on accuracy, this study rec-
ommends the use of H-S collocation.

As was the case with the compass walker, AD was
shown to be the fastest method for the five-link walker.
This fact could have potentially skewed the mean of the
runs using numerical dynamics calculation. In an earlier
stage of this study, before AD was included, symbolic dy-
namics calculation was perceived to be the faster method.
When examining the inclusion or exclusion of the joint
accelerations from the decision variables, the overall CPU
time was slower with their inclusion, but the time per iter-
ation was faster. In the same previous stage of this study,
when 21 collocation points were used, including the ac-
celerations resulted in the second slowest time among the
factors. The per-iteration time was likely due to the in-
creased sparsity of the problem. However, due to the fact
that there were more decision variables with that setup, it
likely would have taken more iterations to solve the prob-
lem.

Including joint accelerations as decision variables sig-
nificantly impacted the optimization results for the five-
link walker. Explicitly incorporating accelerations elimi-
nated alternative gaits, potentially simplifying the search
space and preventing convergence to local minima or un-
desired trajectories. Additionally, increasing the number
of collocation points from eleven to twenty-one further
reduced alternative gait occurrences, suggesting that more
constraints effectively diminished local minima. Compu-
tational efficiency, assessed through CPU time and aver-
age CPU time per iteration, varied significantly among dif-
ferentiation and dynamics calculation methods. Generally,
including accelerations increased computational demands
and variability, although specific method pairs (‘Sym +
SD and Sym + ND’) displayed similar performance. Con-
versely, alternative gaits largely unaffected accuracy met-
rics, yet including accelerations led to notably more sig-
nificant variability in accuracy measures.

One last point to consider with this walker is imple-
mentation. Compared to the compass walker, the symbolic
expressions for the collocation constraints of the five-link
walker were extremely complicated. This is a primary rea-
son why numerical dynamics evaluation was used with
AD. The implementation strategy of symbolic differenti-
ation was also more complicated because of this, namely
because the Jacobian of the collocation constraints were
split into many different parts which had to be assem-
bled. The significant increase of complexity with a 3-DOF
change in system complexity does not bode well for the
generalization of symbolic differentiation to more com-
plex models.

Based on the preceding points, it seems fair to select the
AD framework to be the most desirable. This setting had

a very quick per-iteration and total time to solution, and
its accuracy was comparable to that of most of the other
settings.

5. CONCLUSION

The collocation constraints for the five-link walker were
significantly more complex than those of the compass
walker. This complexity motivated the use of numerical
dynamics evaluation with AD. The implementation strat-
egy of symbolic differentiation was also more complicated
because of this, namely because the Jacobian of the col-
location constraints were split into many different parts
which had to be assembled. The significant increase of
complexity with a 3-DOF change in system complexity
does not bode well for the generalization of symbolic dif-
ferentiation to more complex models. Through the pro-
cess of repeatedly optimizing a walker walking gait, dif-
ferent Jacobian differentiation, collocation, and accelera-
tion handling methods were determined to be more effi-
cient or accurate than others. In order to quickly calculate
a relatively accurate trajectory for a compass walker, au-
tomatic differentiation can be used to calculate the con-
straint Jacobian and objective gradient, while Hermite-
Simpson collocation can be employed within the con-
straints. For a more complicated walker, this same differ-
entiation method can be used. The better acceleration cal-
culation method is more ambiguous. Explicitly including
joint accelerations as decision variables effectively elim-
inates alternative gait solutions but increases computa-
tional complexity and variability in optimization results.
The results of this study can aid others in efficiently deter-
mining gaits which are to be tracked by various robots and
devices.

There are several ways to potentially extend this study.
First, different combinations of settings could be tested.
For example, it would be interesting to see how the com-
pass walker optimization would run if joint accelerations
were included in the decision variables. Additionally, it
could be worthwhile to test more discretization methods.
Lastly, it would be interesting to look at the effect of us-
ing different computer languages, such as the computing
language Julia, on the results.
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