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Unification of Bipedal Robotic Walking 
using Quadratic Program-based 

Control Lyapunov Function
Applications to Regulation of ZMP and Angular 

Momentum

Pilwon Hur,* Kenneth Chao and Victor Christian Paredes Cauna

ABSTRACT

This chapter presents how robotic bipedal walking control can unify locomotion, 
manipulation, and force-based tasks into a single framework via quadratic 
programs utilizing control Lyapunov functions. We introduce two common 
examples where the unifi cation can be applied: (1) ZMP-based pattern generation 
and locomotion, and (2) nonlinear dynamics with push recovery. Specifi cally, 
for ZMP-based pattern generation and locomotion, the proposed controller 
unifi es both model predictive control-based center of mass planning and locally 
exponentially stabilizating control Lyapunov functions. For nonlinear dynamics 
with push recovery, the proposed controller unifi es exponentially stabilizating 
control Lyapunov functions with centroidal angular momentum regulators. 
In both examples, unifi cation of multiple control tasks into a single framework 
via quadratic program has benefi ts in terms of feasibility of constraints, 
simultaneous treatment of control objectives, and robustness and extensibility of 
this approach to various applications. In both examples, the end result was a single 
quadratic program that can dynamically balance all of these disparate objectives. 
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This approach can be implemented as a single framework and allow for more 
holistic implementation of controllers on bipedal robotic walking. 

Keywords: Locomotion, control lyapunov function, quadratic program, angular 
momentum, unifi cation, model predictive control

INTRODUCTION

Control of bipedal robotic walking is one of the main research interests in robotic 
literature. Among various approaches, two control methods have been used 
predominantly: (1) zero-moment point (ZMP)-based control (Kajita et al. 2003a, 
Kuindersma et al. 2014, Stephens and Atkeson 2010, Wieber 2006) and (2) nonlinear 
control methods that can enable dynamic walking (Ames 2014, Grizzle and Westervelt 
2008, Morris and Grizzle 2005). Let’s briefl y look at both ZMP and nonlinear dynamic 
methods, respectively. ZMP is a point where infl uence of all generalized forces (e.g., 
forces, torques) acting on the foot of a robot can be replaced by one single force 
(Vukobratovic and Borovac 2004). ZMP-based methods usually include a simplifi ed 
linear inverted pendulum model (LIPM) with the robot’s center of mass (COM) and its 
ZMP. ZMP-based methods are simple enough that the algorithms can be implemented 
and computed in real time. Even though the ZMP-based methods can provide the 
dynamic balance all the time by keeping the ZMP within the support polygon under 
the foot, the resulting walking on the full-dimensional robot is usually limited to a 
quasi-static behavior. Nonetheless, various implementations of ZMP-based methods 
have been proposed and realized: kinematics-based control (Kajita et al. 2003a), force/
torque-based control (Herzog et al. 2014, Kajita et al. 2003b, Macchietto et al. 2009) and 
whole body control with manipulation (Saab et al. 2013) to name a few. Experimental 
success of ZMP-based methods has motivated further attempts to unify ZMP-based 
methods with nonlinear control methods into a single-unifi ed framework.

On the other end of the spectrum, several nonlinear control methods have been 
proposed to enable dynamic walking for bipedal robots. McGeer (1990) showed that 
exploiting the dynamics of a simple robotic system can achieve more agile and human-
like walking even without any controls compared to ZMP-based methods. Several 
nonlinear control methods could fully utilize the benefi ts of the robot dynamics via 
Poincare analysis for the stability of the hybrid dynamical system. Efforts have been 
made for deriving proper initial conditions for passive robots, or driving a robot actively 
to the region of attraction within an invariant set where a stable periodic orbit exists. 
Examples of nonlinear control include direct trajectory optimization (Posa and Tedrake 
2013), hybrid zero dynamics (Grizzle and Westervelt 2008), human-inspired control 
with partial hybrid zero dynamics (Ames 2014, Zhao et al. 2014). Even though these 
methods utilizing full-order dynamics of the system can provide natural benefi ts of 
human-like and energy-effi cient robotic walking, generating gaits patterns that can 
simultaneously consider whole-body manipulation and robust walking in the presence 
of mild external perturbations is still a challenging control problem due to the high 
complexity of the dynamics and uncertainties of the environment. 

In both methods, whether it is ZMP-based or nonlinear control methods, there 
are several criteria that need to be considered simultaneously when generating control 
laws. These criteria include stability, posture specifi cation (e.g., trajectory tracking 
for each joint), other walking performance (e.g., control efforts, angular momentum, 
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torque saturation, ZMP constraints). Kuindersma et al. (2014) proposed a quadratic 
program that combines MPC of walking pattern generation and locomotion control 
of real-time implementation. Ames and Powell (2013) introduced a unifying method 
of robotic locomotion and manipulation using control Lyapunov function (CLF) and 
quadratic programming (QP). The CLF-QP method was later experimentally realized 
with human-inspired walking control and MPC for full dynamics of robot (Powell et al. 
2015). This unifi cation method (CLF-QP) could combine the aforementioned various 
criteria into a single unifi ed and implementable framework. The CLF-QP framework 
could dynamically balance all of various disjoint controller designs through weighted 
inequality constraints, which provide a holistic implementation of controllers on the 
robotic system. Even though some drawbacks on QP problems including real-time 
implementation and possible infeasibility may exist, the benefi ts of CLF-QP should 
not be undermined. 

In our paper, we will demonstrate how CLF-QP framework can be used to unify 
locomotion controller design with two examples: (1) controller design using ZMP-based 
method and (2) controller design using nonlinear control method for push recovery. The 
structure of this paper is as follows. In Section Control Lyapunov Function-Based 
Quadratic Program, we will introduce and summarize the mathematical framework 
of CLF-QP that will be used in the two examples in Sections Controlling Robot 
Locomotion With Zmp Constraints and Unifi cation of Controller Design Using 
Nonlinear Control Methods for Push Recovery, respectively. Section Controlling 
Robot Locomotion With ZMP Constraints will handle the unifi cation of ZMP-based 
control using CLF-QP. ZMP constraints, linear inverted pendulum model (LIPM) for 
planning of COM trajectory, and a model predictive control (MPC) approach for pattern 
generation of LIPM will also be introduced. Section Unifi cation of Controller Design 
Using Nonlinear Control Methods for Push Recovery will illustrate the unifi cation 
of controller design using nonlinear control methods for push recovery. Specifi cally, 
human-inspired control, partial hybrid zero dynamics, and angular momentum regulation 
will be introduced. Finally, conclusion and future directions will be discussed in Section 
Conclusion. 

CONTROL LYAPUNOV FUNCTION BASED QUADRATIC PROGRAM

In this section, we summarize the framework of control Lyapunov function-based 
quadratic program (CLF-QP). This framework will be used in Sections Controlling 
Robot Locomotion With Zmp Constraints and Unifi cation of Controller Design 
Using Nonlinear Control Methods for Push Recovery as a tool for unifying various 
control methodologies. Readers who want to know the detailed theoretical framework 
for CLF-QP are advised to refer to Ames and Powell (2013). 

We assume that the equations of motion for a robot can be represented by the 
following form of the Euler-Lagrange equations:

D(q)..q + H(q, .q) = Bu, (1)

where q Q Ì n×1, Q is the confi guration space of a robot with degrees of freedom, D 
is the inertia matrix, H is a vector containing the Coriolis and gravity terms, and B n×n 
is the torque map that determines which torque inputs actuate the robot. By reformulating 
(1), the following affi ne control system in the form of ODE can be obtained:
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x. = f (x) + g(x)u. (2)

where x = (q, .q) TQ Ì 2n, and TQ represents the tangent bundle of Q. 
Since robotic walking involves discrete impacts, the discrete behavior in 

conjunction with the continuous dynamics can be formulated in terms of hybrid systems:

 = (,,, Δ, (f, g)), (3)

where Ì TQ Ì 2n is the domain of a smooth submanifold of the continuous dynamics, 
 Ì n is the set of all admissible control, is a proper subset of and is called the 
guard or switching surface at which discrete changes in the dynamics happen, Δ is a 
smooth map called the reset map and determines the discrete changes in dynamics, 
and (f, g) is the affi ne control system governing the continuous dynamics. The details 
of reset map can be found in Ames (2012). 

Suppose that the nonlinear robot dynamics in the form of (2) is associated with an 
output y2 of relative degree 2. Then, the input/output relation can be expressed as follows:�̈�2(𝑞) = 𝐿𝑓2𝑦2(𝑞) + 𝐿𝑔𝐿𝑓𝑦2(𝑞)𝑢 = 𝐿𝑓 + 𝐴𝑢, (4)

where Lf is the Lie derivative and A denotes the decoupling matrix which is always 
invertible since outputs can be chosen mutually exclusive (Zhao et al. 2014). If (2) is 
associated with both output y1 of relative degree 1 and output y2 of relative degree 2, 
the input/output relation can be expressed as follows:�̇�1(𝑞, �̇�)�̈�2(𝑞) ൨ = ቈ𝐿𝑓𝑦1(𝑞, �̇�)𝐿𝑓2𝑦2(𝑞)  + ቈ𝐿𝑔𝑦1(𝑞, �̇�)𝐿𝑔𝐿𝑓𝑦2(𝑞) 𝑢 = 𝐿𝑓 + 𝐴𝑢 , (5)

The control law of feedback linearization for (4) or (5) is then given as follows:

u = A–1 (–Lf + μ) (6)

Applying the feedback law in (6) back to (4) or (5) will result in ..y2(q) = μ or [ .y1(q, .q),  ..y2(q)]T = μ, respectively. Designing appropriate control μ can drive the outputs y1 
and y2 to zero exponentially. For, η H where H is a controlled space with appropriate 
dimension, defi ning the output coordinate η = [y2,  

.y2]
T or η = [y1, y2,  

.y2]
T for (4) or (5) 

yields the following dynamics:

η. = Fη + Gμ (7)

where 𝐹 = ቂ0 𝐼0 0ቃ , 𝐺 = ቂ0𝐼ቃ      for dynamics (4) 

or (8)𝐹 = 0 00 𝐼0 0൩ , 𝐺 = 1 00 00 𝐼൩      for dynamics (5) 

Please note that the original affi ne nonlinear system (2) was turned into a linear 
system (7) as a result of input/output feedback linearization (Isidori 1995, Sastry 1999). 
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302 Adaptive Control for Robotic Manipulators

However, input/output linearization also produces an uncontrolled nonlinear subsystem 
such that the original system (2) can be decomposed as follows:

η. = Fη + Gμ 
z. = Q(η, z) (9)

where z  Z are the uncontrolled states, η are the controlled (or output) states as defi ned 
before, and a vector fi eld Q is assumed to be locally Lipschitz continuous. With some 
appropriate control u (i.e., μ from (6)), η, becomes zero and the uncontrolled nonlinear 
dynamics (9) becomes z. = Q(0, z), which is called a zero dynamics. In this case, the 
manifold z becomes invariant.

To ensure the stability of the continuous dynamics (9) (or equivalently (2)), for 
exponentially stabilizing control Lyapunov function (ES-CLF) V: H → which is 
a continuously differentiable function, there exist c1, c2, and c3 are some positive real 
numbers such that (Ames et al. 2014, Blanchini and Miani 2008),

c1||η||2 ≤ V(η) ≤ c2||η||2 (10)

inf 
μU 

[LfV(η, z) + LgV(η, z)μ + c3V(η)] ≤ 0 (11)

Note that if there are no positive real c1, c2, and c3, exponential stability of (9) is 
not guaranteed. When V(η) is an ES-CLF, the solution of (9) satisfi es the following:‖𝜂‖ ≤ ට𝑐2𝑐1 𝑒−𝑐32 𝑡‖𝜂(0)‖. (12)

However, the defi nition of ES-CLF is not enough to handle the stability of the 
hybrid dynamics (3). That is, the convergence rate of ES-CLF is not fact enough to 
handle the hybrid dynamics. Therefore, ES-CLF is extended to have suffi ciently rapid 
convergence rate to overcome the repulsion due to impact from the discrete dynamics. 
For rapidly exponentially stabilizing control Lyapunov function (RES-CLF), a one-
parameter family of continuously differentiable functions V: H → , there exist c1, c2, 
and c3 are some positive real numbers such that

c1||η||2 ≤ V(η) ≤ c2||η||2 (13)

inf 
μU 

[LfV(η, z) + LgV(η, z)μ + 
c3 V(η)] ≤ 0 (14)

for all 0 ≤ ≤ 1, where c1, c2, and c3 are some positive real numbers that are related 
to the convergence rate to the origin. When uis any Lipschitz continuous feedback 
control law and V(η) is an RES-CLF, the (13) and (14) imply that the solution of (9) 
satisfi es the following:𝑉𝜖൫𝜂(𝑡)൯ ≤ 𝑒−𝑐3𝜖 𝑡𝑉𝜖൫𝜂(0)൯ (15)‖𝜂‖ ≤ 1𝜖 ට𝑐2𝑐1 𝑒−𝑐32𝜖𝑡‖𝜂(0)‖. (16)

Therefore, the rate of exponential convergence can be directly controlled by 
(Ames et al. 2014). Finally, the following optimization problem can be confi gured such 
that control effort can be minimized using quadratic program (QP):
u* = arg min

μ
   μT μ (17)
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LfV(η, z) + LgV(η, z)μ + 
c3 V(η) ≤ 0 (18)

Then, we can eventually come to the following QP-based CLF formulation in 
terms of actual input u.

u* = arg min
u
   uT ATAu + 2LT

f  Au (19)

LfV(η, z) + 
c3 V(η) + LgV(η, z) (Lf + Au) ≤ 0 (20)

It should also be noted that the advantage of using QP based controller is that 
various constrains which are affi ne in the input can be imposed in addition to the 
stability constraints as opposed to min-norm control or LQR. In the next section, the 
other constrains that will be used for ZMP-based walking will be briefl y introduced.

CONTROLLING ROBOT LOCOMOTION WITH ZMP CONSTRAINTS

To control robotic locomotion using ZMP methods, we can consider two methods which 
will be briefed here: (1) nonlinear robot control with ZMP constraints using RES-CLF 
and (2) linear inverted pendulum model for COM trajectory generation using MPC. And 
fi nally, later in this section, we will introduce how these two methods can be unifi ed. 
The details can be found in (Chao et al. 2016).

Nonlinear Robot Control with ZMP Constraints 

We assume that all movements of the robot happen only in the sagittal plane. Then, the 
ZMP constrains for dynamic balance can be described in terms of the ground reaction 
force (GRF), as shown in the following:𝜏𝑦𝐹𝑧 ൰ ≤ 𝑥𝑧+𝑥𝑧− ≤ 𝑥𝑧 ൬=–  (21)

where x–
z  and x+

z are the lower and upper ends of support polygon, xz is the ZMP position, 
τy is an ankle torque in the sagittal plane and Fz is the vertical GRF. To achieve robotic 
bipedal locomotion while satisfying the constraint of (21) and minimizing the control 
effort, CLF-QP with RES-CLF that was introduced in the previous section can be used. 
CLF-QP can then be formulated in the following way:

u–* = arg min
u–
   u–T HCLF u– + f T

CLF  u– (22)

s.t. V
.
(x) ≤ – V(x) (23)𝜏𝑦𝐹𝑧 ≤ 𝑥𝑧+. 𝑥𝑧− ≤ –  (24)

where HCLF is the quadratic objective function, fCLF is the linear objective function, 
(23) is RES-CLF condition, (24) is ZMP constraint and x = [q  .q]T and –u is the control 
input from the extended robot dynamics (extended from Eq. (1)) D(q) ..q + H(q,  .q) = 
[B J T

h] [ u
F] ≡ –B–u, where Jh is Jacobian matrix of the contact constraint h(q), and F is the 

ground reaction force vector.
However, even though the inequality (24) is satisfi ed,  the robot can still enter the 

states for which there is no feasible solution to the ZMP constraints (24). In the next 
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304 Adaptive Control for Robotic Manipulators

subsection, we will introduce another method using linear inverted pendulum model 
and MPC.

Linear Inverted Pendulum Model for COM Trajectory Generation

To simplify the ZMP tracking, one can generate a COM trajectory with the linear 
inverted pendulum model (LIPM) that tracks the desired ZMP trajectory (or walking 
pattern generation). For this pattern generation, model predictive control (MPC) has 
been used in the literature. Since LIPM assumes a constant COM height, we have the 
following relation:�̈�𝑐 = 𝑔𝑧0 (𝑥𝑐 − 𝑥𝑧) ≡ 𝜔2(𝑥𝑐 − 𝑥𝑧)  (25)

where z0 is the constant COM height, xc is the horizontal component of the COM, xz is the 
ZMP. The continuous equation (25) is then discretized to implement MPC as following:

𝑥𝑡+1 =  1 ∆𝑇 0𝜔2∆𝑇 1 −𝜔2∆𝑇0 0 1 ൩ 𝑥𝑡 +  00∆𝑇൩ 𝑢𝑡   (26)

where xt = [xct  
.xct xzt]

T, and ΔT is the sampling time. If N time step horizon is assumed, 
we have the following linear equation:

 –X =  –Axt0 +   –B –U (27)

where  –X = [xT
t0+1 ... xT

t0+N]T and  –U = [uT
t0+1 ... uT

t0+N]T are the sequence of states and control 
inputs, respectively, and  –A and  –B are derived from (26). The predictive control can be 
computed from the following optimization problem:

 –U* = arg min –U
    –UT HP –U + f T

P   
–U (27)

s.t. C –U ≤  –d (28)

where ZMP constraint is expressed in the linear constraint (28). The details of constraints 
and objective function will be explained in the next subsection where the unifi cation 
will be introduced. Even though the pattern generation for LIPM via MPC has 
advantage of real-time implementation, the oversimplifi cation of LIPM may generate 
control sequence that may not be feasible for the full nonlinear dynamics. Also, the 
ZMP trajectory generated for LIPM may not result in a feasible ZMP trajectory for 
the full nonlinear dynamics. To overcome these issues for both nonlinear robot control 
with ZMP constraints and LIPM with MPC, we will introduce the unifi cation of both 
methods in the next subsection.

Uni ication of Pattern Generation and Locomotion via CLF-QP

Setup for Nonlinear CLF-QP

In this subsection, we will combine nonlinear CLF-QP with LIPM-MPC. The setup of 
CLF-QP for ZMP-based walking was already introduced in Section Control Lyapunov 
Function-Based Quadratic Program. For ZMP-based walking, we need relative 
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degree two output function (4) for the input/output linearization. The RES-CLF for the 
linearized dynamics (7) is used as the following form (Ames et al. 2014),

V(x) = V(η) = ηTPη (29)

where P can be obtained from the solution of the continuous time algebraic Riccati 
equation (CARE):

FTP + PF – PGGTP + Q = 0 (30)

where Q = QT > 0, and P = PT > 0. As mentioned in Section Control Lyapunov 
Function-Based Quadratic Program, exponentially stabilizing η with the convergence 
rate > 0, η must satisfy the following condition:

V
.
(η) = LfV(η)+ LgV(η)u ≤ – V(η) (31)

where 

LfV(η) = ηT(FTP + PF)η

LgV(η) = 2ηTPG (32)

In this setup, we assume the following for the output functions: (1) the height of 
COM is set to initial height, yzCOM

 = z
COM 

(q0), (2) torso angle is fi xed with respect to the 
inertial frame, yθtorso

 (q) = 0, (3) during the single support phase, the orientation of swing 
foot, yθfoot

 (q), is zero (i.e., horizontal to the ground), and the horizontal and vertical 
positions of swing foot yxfoot

 (q) and yzfoot
 (q) are smooth polynomial functions where 

the velocities and accelerations at the beginning and at the end of swing phase are zero.
Here, we introduce all constraints used for CLF-QP. For exponential stability 

(31), we relaxed the constraint to improve the feasibility when there are multiple active 
constraints. The relaxation is penalized in the objective function.

V
.
(η) = LfV(η)+ LgV(η)u ≤ – V(η) + δ (33)

Torque for each motor can exert was limited such that |u| ≤ umax. For ZMP constraint, 
we used (21). We also made sure that normal force at the foot is always positive, Fz ≥ 
0. The contact constraints are imposed in the equation of motion as follows (Murray 
et al. 1994),�̈� = 𝐽ℎ𝑇 ቂ൫𝐽ℎ𝐷(𝑞)−1𝐽ℎ𝑇൯−1 − 𝐼ቃ × ൫𝐽ℎ𝐷(𝑞)−1𝐻(𝑞, �̇�) − 𝐽ℎ𝑇𝐽ℎ̇ �̇�൯− 𝐽ℎ𝑇 ቂ൫𝐽ℎ𝐷(𝑞)−1𝐽ℎ𝑇൯−1 − 𝐼ቃ 𝐽ℎ𝐷(𝑞)−1𝑢 

 (34)

where h(q) is the holonomic constraint of contact points, Jh is the Jacobian matrix of 
h(q). The detailed derivation of (34) can be found in (Chao et al. 2016).

The objective function for nonlinear CLF-QP is similar to (19). One modifi cation 
to (19) is that minimization for relaxation is added with some weighting as following:

u* = arg min
u–
   u–T AT Au– + 2 LT

f   Au– + pδ2 (35)

Where –u is defi ned the same as in (22), and p is the weighting factor for the relaxation δ.
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306 Adaptive Control for Robotic Manipulators

Setup for LIPM via MPC

Since robotic walking alternates single support (SS) and double support (DS) phases, the 
target duration of MPC horizon has N discrete points where N = (TSS + TDS)/ΔT, and TSS, TDS, 
ΔT are single support time, double support time, and MPC sampling time, respectively. 
Therefore, the horizon naturally consists of three phases of either SS-DS-SS or DS-SS-
DS depending on the current phase. For the LIPM-MPC constraints, one of the goals is 
to enforce the COM to reach the position xc

goal at the end of the trajectory. Also, ZMP over 
the horizon has to remain within the support polygon. The details can be found in (Chao 
et al. 2016, Stephens and Atkeson 2010, Stephens 2011, Wieber 2006).

The objective function for MPC is to minimize the control effort, while achieving 
ZMP trajectory tracking and driving the COM position to the desired location for the 
next step. The objective function is given as follows:𝑈ഥ∗ = argmin𝑈ഥ∗ 𝜔1𝑈ഥ𝑇𝑈ഥ + 𝜔2ห𝑋ത𝑧 − 𝑋ത𝑧𝑔𝑜𝑎𝑙 ห2  (36)

where ω1, ω2 are the weighting factors,  –X z
goal is the desired ZMP trajectory, and xc

goal is 
the desired COM terminal position at t = t0 + N.

Uni ied QP combining Pattern Generation and ZMP-based Walking 
Control

The QP which combines both pattern generation and ZMP-based locomotion with 
RES-CLF is given as follows:

*, *, *
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b

b

z
L x L L x u x x

g

s.t.
 (37)

where the last equality constraint is from (25). As a synthesis constraint, it aims to 
equate the COM acceleration,  ..xc, in full dynamics to the  ..xc in LIPM so that the pattern 
generation will plan the COM with the acceleration feedback from full dynamics. 
By solving the QP for each time step, the instantaneous torque input for ZMP-based 
locomotion considering both output tracking and COM planning on-the-fl y can be 
derived.
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Unifi cation of Bipedal Robotic Walking  307

Simulation Result and Future Direction

The unifi ed controller introduced in the previous subsection is implemented on the model 
of AMBER 31 which is a human-sized, planar, and fully actuated bipedal robot with 6 
degrees of freedom. For the simulation, the following parameters were implemented 
(Table 1).

With these parameters, the unifi ed controller was implemented combining nonlinear 
CLF-QP and LIPM-MPC using MATLAB (v2015a, MathWorks, Natick, MA). The 
results are shown in Figs. 1, 2, and 3. As the fi gures show, tracking performance seems 
satisfactory. However, compared to the controller solving LIPM-QP and CLF-QP 
separately, several adjustments of the unifi ed QP controller has to be made to ensure 

1AMBER 3 was built in AMBER Lab led by Dr. Aaron Ames at Texas A&M University. Please note 
that AMBER Lab moved to Georgia Tech in Atlanta, GA in July 2015. Since then, AMBER 3 has 
been maintained, operated, and redesigned by Human Rehabilitation (HUR) Group led by Dr. 
Pilwon Hur at Texas A&M University.

Table 1. Important simulation parameters.

Parameter Value Parameter Value
Tss 2s TDs 1s

MPC sampling time ΔT 0.1s Length of MPC horizon 3s
Step Length 10 cm Stride Height 5 cm

Figure 1. Comparison of ZMP trajectories (left) and joint tracking profi les (right) from two different 
simulations of the proposed method: (1) unifi ed QP with terminal constraints on the COM, (2) unifi ed 
QP without the terminal constraints.

Figure 2. Joint torques from simulation of the proposed unifi ed RES-CLF QP with (left) and without 
(right) terminal constraints on the COM.
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that the system would not be over-constrained. The fi rst change was to remove xc 
from the output vector in the unifi ed framework because the resolved control input 
also minimized the cost function in unifi ed pattern generation. Dropping of xc could 
provide greater fl exibility for integration with other tasks. Second, the COM terminal 
constraints were removed in the unifi ed framework, since this would make the system 
over-constrained and the control input would lose continuity and cause chattering as 
shown in Figs. 2, and 3, although the derived joint trajectories and ZMP patterns (Fig. 1) 
are similar. Lastly, the direct ZMP feedback for updating xt0 in real-time COM planning 
would easily cause the resolved xc to diverge in the beginning of single support due to 
the impact in the full dynamics. As a result, only partial state feedback of the COM 
position and velocity from the full dynamics were applied. Future implementations 
will reason about hybrid system elements, such as impact equations, for a more general 
pattern generation scheme.

UNIFICATION OF CONTROLLER DESIGN USING NONLINEAR 
CONTROL METHODS FOR PUSH RECOVERY

As was mentioned in the Introduction section, nonlinear dynamic walking has benefi ts 
over the ZMP-based walking in terms of agileness, effi ciency, and resemblance of the 
human walking. However, it lacks the robustness which is defi ned as the capacity to 
react to or the ability to keep balance against external perturbations. The causes of 
disturbances in robotic walking can be various, e.g., slippery surface, external push 
and uneven terrain. The importance of robust stabilization of the perturbed bipedal 
walking gait cannot be overemphasized in the situations where the gait stability and 
task performance of rescue robots, space robots, and any other service robots can be 
easily threatened via unexpected disturbances. However, despite these importance, 
robust stabilization of the perturbed bipedal walking is still a challenging research 
topic. In this section, we will consider unifi cation of controller design via CLF-QP for 
push-recovery scenario. 

In the biomechanics literature, humans are known to regulate the whole body 
angular momentum during walking (Herr and Popovic 2008, Popovic et al. 2004a, 
2004b). Neptune and McGowan (2011) also reported that the regulation of whole-body 
angular momentum is essential to restoring and maintaining dynamic balance during 
walking. In the robotics community, several researchers have proposed control schemes 

Figure 3. Ground reaction forces from simulation using the proposed unifi ed RES-CLF QP with (left) 
and without (right) terminal constraints on the COM.
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exploiting angular momentum to recover balance of robots from external perturbations. 
Kajita et al. (2003b) presented a controller that regulated whole-body linear and angular 
momenta to the desired momenta. Goswami (2004) proposed to regulate the rate of 
angular momentum to zero in order to maintain stability. 

As mentioned in Section Control Lyapunov Function-Based Quadratic 
Program, CLF-QP can be used to generate optimal controller in real time with 
guaranteed exponential stability. Furthermore, CLF-QP combined with the human-
inspired control from the human walking data could provably result in stable and human-
like robotic walking (Ames 2014). In this section, we introduce a control framework 
that unifi es CLF-QP with human-inspired control and regulation of centroidal angular 
momentum, which we call CLF-K-QP. In the following subsections, we will show that 
the inclusion of centroidal angular momentum regulation in the CLF-QP with human-
inspired control can robustly reject disturbance due to external perturbations while 
successfully tracking joint trajectories.

Angular Momentum in Bipedal Walking

In this subsection we briefly present angular momentum calculation. Detailed 
explanation can be found in (Orin and Goswami 2008). For each link i, linear and 
angular momenta about its COM can be computed as follows:ℎ𝑖 =  𝑙𝑖𝑘𝑖൨ =  𝑚𝑖𝑣𝑐𝑖𝐼𝑖𝐶𝑂𝑀𝜔𝑖൨ (38)

where vci
 and ωi are linear velocity of link i COM and angular velocity of link i, 

respectively. mi and Ii
COM are mass and inertia tensor with respect to the link i COM, 

respectively. Translating each momentum of link i to the origin of the local reference 
frame, with a distance from the origin to its center of mass as →pci

, and expressing the 
cross product using a skew symmetric matrix, S(a)b = a × b, the momentum can be 
derived in matrix form as shown in the following equation:

ℎ𝑖𝑂 = ቈ 𝑙𝑖𝑂𝑘𝑖𝑂 = 𝑚𝑖𝐼3×3 𝑚𝑖𝑆൫𝑝𝑐𝑖൯𝑇𝐼መ𝑖 𝑚𝑖𝑆൫𝑝𝑐𝑖൯ ൩ ቂ𝜔𝑖𝑣𝑖 ቃ = 𝐴𝑖𝑂𝑉ሬ⃗ 𝑖 (39)

where →Vi is the system velocity which contains ωi and vi of the link i, and  Îi = Ii
COM + 

miS(→pci
)S(→pci

)T.
Then, the collection of momentum for all links of the system can be given as 

follows:

ℎ𝑂 = ℎ1𝑂⋮ℎ𝑛𝑂 = 𝑑𝑖𝑎𝑔[𝐴1𝑂 … 𝐴𝑛𝑂]𝑉ሬ⃗ = 𝐴𝑂𝑉ሬ⃗   (40)

where
→V = [( →V 1)

T ... ( →Vn)
T]T (41)

The velocity at the origin of the local coordinate system can be computed using a 
Jacobian with respect to the link’s reference frame as follows:

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 -

 C
ol

le
ge

 S
ta

tio
n]

 a
t 1

1:
38

 0
2 

M
ar

ch
 2

01
7 



310 Adaptive Control for Robotic Manipulators

→V i  = Jiq
. (42)

where q is the joint angle vector, and Ji is the Jacobian of the reference frame on link 
i. Combining (41) with (42) can yield the following equation:
→V  = [(J1)

T ... (Jn)
T]T q. = Jq. (43)

Then, both (40) and (43) leads to:

hO = AO Jq. = H Oq. (44)

By projecting each momentum onto the COM, we get the following equation:ℎ𝐺 =𝑋𝑖𝐶𝑂𝑀ℎ𝑖𝑂𝑛
𝑖=1 =𝑋𝑖𝐶𝑂𝑀𝐻𝑖𝑂�̇�𝑛

𝑖=1  (45)

ℎ𝐺 = [𝑋1𝐶𝑂𝑀 … 𝑋𝑛𝐶𝑂𝑀]𝐻𝑖𝑂�̇� = 𝑋𝐶𝑂𝑀𝐻𝑖𝑂�̇� = 𝐴𝐺�̇�  (46)

CLF-QP and Human-Inspired Control

Robot Dynamics

Figure 4 gives the coordinate system and defi nition of joint angles: θ = [θsa, θsk, θsh, 
θnsh, θnsk, θnsa]

T. The equation of motion for the robot using Euler-Lagrange formula is 
given as follows:

D(θ) 
..
θ + H(θ,  

.
θ) = Bu (47)

where D(θ) 6×6 is the inertial matrix and H(θ,  
.
θ) 6×1 contains the terms resulting 

from the Coriolis effect and the gravity vector. The torque map B = I6×6 under the 
assumption that the robot is fully-actuated and the control input, u, is the vector of 
torque inputs. With the notation x = [θ ;  

.
θ], we assumed to have the following affi ne 

control system:

x. = f (x) + g(x)u (48)

Figure 4. Flat footed robot model.
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Unifi cation of Bipedal Robotic Walking  311

Human-Inspired Outputs

With the goal of achieving human-like robotic walking, we need to drive the actual robot 
output ya(θ) to the desired human output yd(t, α) that are represented by the canonical 
walking function (CWF):

yCWF = eα4t(α1 cos(α2t) + α3 sin(α2t)) + α5 (49)

Instead of using experimental human walking data directly, we are interested in 
seeking a low dimensional representation of human walking. It is known that hip position 
increases linearly with time whereas other human walking data can be fi tted by CWF 
in the form as in (49) (Ames 2014, Sinnet et al. 2014). For our model (see Fig. 4), a 
total of 6 outputs are of interest for the fully-actuated 7-link bipedal robot. Therefore, 
we introduce human-inspired outputs as follows:

𝑦൫𝜃, �̇�, 𝛼൯ = ቈ𝑦1൫𝜃, �̇�, 𝛼൯𝑦2(𝜃, 𝛼)  = ቈ 𝑦1𝑎൫𝜃, �̇�൯ − 𝑣ℎ𝑖𝑝𝑦2𝑎(𝜃) − 𝑦2𝑑(𝜌(𝜃), 𝛼) (50)

where y1(θ,  
.
θ, α) is the relative degree one output which is the difference between the 

actual hip velocity y a
1(θ,  

.
θ) and the desired hip velocity vhip. The vector y2(θ, α) contains 

the 5 relative degree two human-inspired outputs which are the differences between 
the actual outputs y a

2(θ) and the desired output y d
2(ρ(θ), α). Based on the linearity of 

hip position over time, ρ(θ) is utilized as a time parameterization of the given human 
walking gait. 

Utilizing these outputs, the human-inspired controller can be utilized to drive both 
y1 → 0 and y2 → 0 in a provably exponentially stable fashion for the continuous 
dynamics. However, the robot may be “thrown-off” from the designed trajectory when 
impacts occur. This motivates the introduction of the partial hybrid zero dynamics 
(PHZD) constraints aiming to yield a parameter set α that ensures the tracking of relative 
degree two outputs will remain invariant even after the impacts. In particular, with the 
partial zero dynamics (PZD) surface defi ned as:

PZα = {(θ,  
.
θ) TQ : y2(θ, α) = 0, Lf y2(θ, α) = 0} (51)

The PHZD constraint can be explicitly stated as:

ΔR(SR Ç PZα) Ì PZα  (52)

where ΔR and SR are the reset map and switching surface of the robot model, respectively. 

Human-Inspired Control

With the human-inspired output functions defi ned in the previous subsubsection, we can 
perform input/output linearization. The details of this process are already introduced 
in Section Control Lyapunov Function-Based Quadratic Program. Since we have 
both relative degree one output and relative degree two output vectors, the input/output 
relation is the same as (5) and the feedback control is the same as (6). The linearized 
equation (7) has Lyapunov function defi ned as in (29) that is related to the solution of 
CARE (30). The Lyapunov function (29) is a RES-CLF once it satisfi es the constraint 
(14). Finally, CLF-QP is defi ned with the cost function (17) or (19).
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312 Adaptive Control for Robotic Manipulators

Uni ication of CLF-QP and Angular Momentum Regulator

In the previous subsection, we have already defi ned CLF-QP. In this subsection, angular 
momentum regulator will be combined via a QP. That is, the new controller (CLF-K-QP) 
adds a Lyapunov constraint to track the desired values of centroidal angular momentum 
as another constraint in the QP. As derived before, the centroidal angular momentum 
at the COM is expressed as follows:

hG = AGq. (53)

Since the centroidal angular momentum is of interest in this application, the linear 
momentum will be discarded from now on.

kG = [03×3  I3×3]h
G = Kx (54)

As usual, the dynamics of the system is expressed as in (48). To track a desired 
angular momentum R, it is possible to construct a Lyapunov function based on the 
actual angular momentum as follows:

Vk = (kG – R)T (kG – R) = (Kx – R)T (Kx – R) (55)

To ensure exponential convergence, the following condition must be met.𝐿𝑓𝑉𝑘(𝑥) + 𝐿𝑔𝑉𝑘(𝑥)𝑢 ≤ −𝛾𝑘𝜖𝑘 𝑉𝑘(𝑥) (56)

where γk and k are both positive and determine the rate of convergence. γk is a constant 
while k can be changed by the control designer. A smaller k would increase the 
convergence rate but it may affect feasibility of the optimization.

Since the system is already fully-actuated, we relax the tracking of CWF with the 
insertion of δ1 and δ2 as shown in (57, 58, 59) to compensate for disturbances in angular 
momentum at the cost of losing tracking performance. Therefore, an optimal u* that 
tracks the CWF and the centroidal angular momentum is given by:

u* = arg min
u
    uT AT Au + 2LT

f   Au + p1δ1
2 + p2δ2

2 (57)
s.t.
φ0(q, q.) + φ1(q, q.) (Au + Lf) ≤ δ1

 (58)

φk
0(q, q.) + φk

1(q, q.)T u ≤ δ2 (59)

where 

0

1

( ) ( ) ( )

( ) ( )

   


  

 



f

T
g

L V V

L V
 (59)

𝜑0𝑘 = 𝐿𝑓𝑉𝑘(𝑥) + 𝛾𝑘𝜖𝑘 𝑉𝑘(𝑥) (60)

φk
1 = LgVk(x)T (61)
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Unifi cation of Bipedal Robotic Walking  313

and δ1 and δ2 are positive slack variables inserted into constraints (58) and (59) to relax 
the conditions on tracking and angular momentum regulation in order to fi nd feasible 
solution.

To compute the desired centroidal angular momentum R, it is possible to 
compute the ideal states from the PHZD surface which represents a lower dimensional 
presentation of the system. These ideal states can be plugged into (46) to compute R 
which will then be plugged into the optimization shown in (59). 

Simulation Result and Future Direction

In the simulation, we assumed that the robotic model is perturbed by an external and 
impulsive force Fext = 700N horizontally at the torso in the direction of movement for 
t = 0.05s and was applied when ρ(θ) = 0.21. The proposed controller CLF-K-QP is 
compared with CLF-QP. In order to have specifi c metrics of performance we use the 
root-mean-square (RMS) values to compare the tracking performance for the different 
quantities we are interested in.

The results are shown in Figs. 5, 6 and Table 2. The principal differences found 
during an external push include torso angle, angular momentum and hip velocity 
(Fig. 6). After the disturbance, all of torso angle, centroidal angular momentum and hip 
velocity suffered from a signifi cant deviations from their nominal trajectories. The CLF-
QP controller tried to recover joint trajectory tracking for the torso back to its desired 
value faster compared to CLF-K-QP. However, CLF-K-QP did not immediately drive 
the torso angle to its desired trajectory as shown in Fig. 6a. As expected, CLF-K-QP 
performed better in tracking of angular momentum to its desired value compared to 
CLF-QP (Fig. 6b). Interestingly, CLF-K-QP showed better performance in hip velocity 

Figure 5. Outputs of unperturbed system. Note that superscript d represents desired trajectory whereas 
superscript a represents actual trajectory.

Figure 6. Torso angle evolution for one perturbed step. Note that superscript d represents desired 
trajectory whereas superscript a represents actual trajectory.
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compared to CLF-QP (Fig. 6c). When perturbation as applied, hip velocity increased 
drastically for both controllers. However, CLF-K-QP outperformed CLF-QP in that 
CLF-K-QP had smaller peak hip velocity and kept the hip velocity signifi cantly close 
to the desired hip velocity compared to CLF-QP. What is more inspiring is that even 
though CLF-QP was better at tracking torso angle, hip velocity tracking became worse. 
Based on these observations, we may summarize the following fi ndings: (1) when the 
system is perturbed, CLF-K-QP put more effort in regulating angular momentum, 
(2) CLF-K-QP relaxes tracking of torso angle, and (3) the system can maintain its 
walking speed more robustly with CLF-K-QP. These three observations may not seem 
to work independently. For example, relaxed torso angle due to CLF-K-QP may have 
counteracted the undesired and excessive angular momentum, and eventually the system 
could maintain the walking speed better, whereas CLF-QP made the system stiffer. This 
may be similar to the natural behavior of human beings how protract their torso and 
outstretch their arms out to counteract the debilitating angular moments.

CONCLUSION

This chapter presented how robotic bipedal walking control can use the framework 
developed for locomotion and manipulation to unify ZMP-based tasks, force-based 
tasks, and angular momentum regulation into the same single framework via quadratic 
programs utilizing control Lyapunov functions. We introduced two possible examples 
where the unifi cation can be applied: (1) ZMP-based pattern generation and locomotion, 
and (2) nonlinear dynamics with push recovery. In both examples, the end result was a 
single quadratic program that can dynamically balance all of these disparate objectives. 
This approach can be implemented as a single algorithm and allow for more holistic 
implementation of controllers on bipedal robotic walking. Practically, CLF-QP has 
been implemented in real-time to experimentally achieve 2D bipedal robotic walking. 
However, the speed of the QP depends on the feasibility of the constraints, so future 
study investigating the relation between feasibility of constraints and QP computation 
will be an interesting problem.
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