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PREFACE

Human standing posture is inherently unstable. The postural control

system (PCS), which maintains standing posture, is composed of the

sensory, musculoskeletal, and central nervous systems. Together these

systems integrate sensory afferents and generate appropriate motor

efferents to adjust posture. The PCS maintains the body center of mass

(COM) with respect to the base of support while constantly resisting

destabilizing forces from internal and external perturbations. To assess the

human PCS, postural sway during quiet standing or in response to external

perturbation have frequently been examined descriptively. Minimal work

has been done to understand and quantify the robustness of the PCS to

perturbations. Further, there have been some previous attempts to assess

the dynamical systems aspects of the PCS or time evolutionary properties

of postural sway. However those techniques can only provide summary

information about the PCS characteristics; they cannot provide specific

information about or recreate the actual sway behavior.   

This book consists of two parts: part I, the development of two novel

methods to assess the human PCS and, part II, the application of these

methods. In study 1, a systematic method for analyzing the human PCS

during perturbed stance was developed. A mild impulsive perturbation that

subjects can easily experience in their daily lives was used. A measure of

robustness of the PCS, 1/MaxSens that was based on the inverse of the

sensitivity of the system, was introduced. 1/MaxSens successfully

quantified the reduced robustness to external perturbations due to age-

related degradation of the PCS. In study 2, a stochastic model was used to

better understand the human PCS in terms of dynamical systems aspect.
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This methodology also has the advantage over previous methods in that the

sway behavior is captured in a model that can be used to recreate the

random oscillatory properties of the PCS. The invariant density which

describes the long-term stationary behavior of the center of pressure (COP)

was computed from a Markov chain model that was applied to postural

sway data during quiet stance. In order to validate the Invariant Density

Analysis (IDA), we applied the technique to COP data from different age

groups. We found that older adults swayed farther from the centroid and in

more stochastic and random manner than young adults.  

In part II, the tools developed in part I were applied to both

occupational and clinical situations. In study 3, 1/MaxSens and IDA were

applied to a population of firefighters to investigate the effects of air bottle

configuration (weight and size) and vision on the postural stability of

firefighters. We found that both air bottle weight and loss of vision, but not

size of air bottle, significantly decreased balance performance and

increased fall risk. In study 4, IDA was applied to data collected on 444

community-dwelling elderly adults from the MOBILIZE Boston Study.

Four out of 5 IDA parameters were able to successfully differentiate

recurrent fallers from non-fallers, while only 5 out of 30 more common

descriptive and stochastic COP measures could distinguish the two groups. 

Fall history and the IDA parameter of Entropy were found to be significant

risk predictors for falls.  

This research proposed a new measure for the PCS robustness

(1/MaxSens) and a new technique for quantifying the dynamical systems

aspect of the PCS (IDA). These new PCS analysis tools provide easy and

effective ways to assess the PCS in occupational and clinical environments. 

Pilwon Hur
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1 INTRODUCTION

1.1 Backgrounds

1.1.1 Postural Control System

Human standing posture is physically unstable. Maintaining a stable

standing posture requires balance mechanisms that are also integral to the

execution of many human movements. In this work, balance is the ability

of maintaining and controlling the body center of mass (COM) within the

base of support (BOS) during standing, where the BOS is defined as an

area on the ground with borders defined by foot position. For example, a

side-by-side foot placement while standing creates a trapezoidal BOS, 

whereas the double support phase during walking generates a

parallelogram shaped BOS. In a broader sense, balance means not only

maintaining body posture but also maintaining the body COM within the

BOS while moving. Stepping and walking requires postural adjustments

during each task to change the BOS effectively so that body COM can

move through the space without falling (Carr & Shepherd, 1998). However, 

in this book, we define balance as the following: balance during standing is

a mechanism to maintain the body COM within the BOS of the stationary

feet while resisting the destabilizing effects of gravity and external

disturbances. 

Balance is maintained through complicated interactions between the

sensory and musculoskeletal systems. The postural control system (PCS) is

comprised of the sensory, musculoskeletal and central nervous systems

(CNS). PCS maintains balance by constantly reacting to internal or

external perturbations. 

The sensory system is composed of vestibular, visual and
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proprioceptive organs where no single organ directly senses the position of

the body COM (Fay B Horak, Shupert, & Mirka, 1989). The vestibular

system provides information on the position of the head with respect to

gravity and motion information through the linear and angular acceleration

of the head. The visual system gives position of objects in space and

relative position of the body with respect to the environment. The

proprioceptive system consists of muscles, joints and cutaneous receptors

and senses relative position of body parts with respect to their neighbors. 

The CNS integrates sensory afferent signals and generates motor

efferent signals that will innervate muscles to maintain posture with the

body COM within BOS (feedback control) (Latash, 2008). A feedforward

block is related to anticipation due to cognition or environmental context. 

A passive component and reflex block models dynamics created by tissues

around joints and postural reflexes. A generally accepted schematic block

diagram of the PCS is given in Figure 1.1 (Latash, 2008; Massion, 1994). 

The body COM can be maintained within the BOS through several

possible combinations of joint movements. Additionally, this flexibility can

accommodate internal or external perturbations to the system. The

literature describes three main postural control strategies: ankle strategy, 

hip strategy and stepping strategy (F B Horak & Nashner, 1986; Nashner, 

1985). Different strategies are employed by an individual depending on the

magnitude of applied perturbation. The ankle strategy is commonly used to

compensate for internal or mild external perturbations. In this case,

postural adjustments are made using the ankle joint, enabling the human

body to be modeled as a single-link inverted pendulum. The hip strategy is

employed when larger but still mild perturbations are applied. In this case,

most of the postural adjustments happen at the hip joint with a small
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postural sway and an increased risk of falls. Therefore, assessing and

quantifying the performance and reliability of the PCS are important

components of an intervention strategy to reduce fall risk. Through

appropriate intervention and rehabilitation, such as education of PCS,

balance training, prescriptions of muscle strengthening training, and

vitamin D (Nakamura et al., 2006), we may reduce risk of falls and

increase the quality of lives (Lord, Sherrington, & Menz, 2007). 

1.1.2 Assessment of the Human Postural Control System

In the literature, the PCS has been assessed using tasks such as quiet

standing, leaning, performing voluntary movements (or functional balance)

and using external perturbations to disturb the system during a task. In this

book, we confine our interests only to quiet standing and the response to

mild external perturbations. 

1.1.2.1Quiet Stance

Generally, quiet standing is characterized by small amount of postural

sway. Control of postural sway is accomplished through the integration of

afferent sensory signals and muscle activity (R. Fitzpatrick, Rogers, &

McCloskey, 1994). During quiet standing, the COM is perturbed by

internal disturbances such as breathing, cognitive changes, and fatigue. In

order to maintain standing posture, the PCS constantly adjusts the body to

maintain the projection of the body COM within the BOS. 

The center of pressure (COP) is the location of application of the

ground reaction force vector on the force platform, and is a dynamic output

of the postural control system. COP has been widely used to quantify

postural sway because it is easily recorded using a force platform. A large



5

number of traditional statistical measures have been used to quantify the

COP trajectory including the total length of sway path, standard deviation

of anterior-posterior (AP) time series, mean and velocity of sway. However,

traditional measures provide only statistical descriptions of postural sway, 

not the temporally evolving dynamical aspects of the PCS (Stergiou, 2004).

Some researchers also suggest that these parameters have reliability issues

(T. L. Doyle, Newton, & Burnett, 2005). 

Collins and De Luca (1993) introduced a method for analyzing COP

trajectories known as stabilogram diffusion analysis (SDA). SDA generates

a stabilogram diffusion plot which summarizes the mean square COP

displacement as a function of the time interval. The linear increase of mean

square displacement in value as a function of the time interval is

characterized by the diffusion coefficient, which is equal to one half of the

slope of a linear-linear version of the stabilogram diffusion plot. Collins

and DeLuca noticed that rather than obtaining a single straight line, they

identified two linear regions. They divided the stabilogram diffusion plot

into a short-term region and a long-term region. In the short-term region of

the log-log version of the diffusion plot, the scaling exponent (H>0.5)

suggested that the COP moved in a persistent way, whereas in the long-

term region, the scaling exponent (H<0.5) suggested that the COP moved

in an anti-persistent way. They then postulated that the short-term region is

governed by an open-loop control mechanism, while the long-term region

is governed by a closed-loop control mechanism. 

However, Newell et al. (1997) claimed that the existence of dual

open-loop and closed-loop diffusion processes needed to be examined

carefully. They further questioned whether there is a critical point in the

diffusion profile that demarcates distinct open-loop and close-loop control
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processes in posture. They showed that a one-process Ornstein-Uhlenbeck

model could also account for 92% of the variance of the COP diffusion and

the two-process open-loop and closed-loop model (J J Collins & De Luca,

1993) accounted for 96% of the variance. Newell et al. (1997) also

mentioned that fitting models (both Ornstein-Uhlenbeck model and the 2D

random walk model by Collins and DeLuca) to the variance of the

diffusion process is not a direct way to identify the postural control system

and could be missing the time evolutionary and stochastic properties of

COP data. Neither the SDA nor the Ornstein-Uhlenbeck model can

recreate the COP sway distribution since they provide only summary

information of COP sway and no actual data of the fluctuation of the COP. 

Postural sway has also been investigated through simple models of

the human PCS. Maurer and Peterka (2005) investigated the relationship

between different measures of postural sway by modeling the human body

as a single-link inverted pendulum that is modulated by a proportional-

integral-derivative (PID) controller at the ankle. A time delay term was

included in the model and random noise was added to the ankle torque.

Through an optimization process, model parameters could be identified

and 15 postural sway measures, such as maximum distance, root mean

square distance, mean velocity, and mean frequency were examined from

the model output. Maurer and Peterka (2005) also demonstrated that given

14 of these postural sway measures, model parameters could be identified. 

This simple model-based approach is promising in that given postural

sway information, neurophysiological information of the PCS could be

extracted. However, this approach can lead to misinterpretation of the PCS.

For example, even though increases in postural sway may imply either a

decrease in stiffness or an increase of noise level, their optimization
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process picked only one of them. Unchanged postural sway might be due

to increases in both stiffness and noise level whereas the optimization

process would indicate no changes in stiffness and noise level (Pavol, 

2005). Therefore, identifying underlying mechanisms by postural sway

measures using their model of the PCS may be somewhat restricted. 

1.1.2.2Perturbed Stance

Even though assessment of standing sway has provided useful information

about the PCS, it may provide limited information about the ability to

respond to changing postural tasks. Unexpected perturbations are typically

experienced when sitting or standing on a supporting surface that moves, 

for example, when riding on a train or bus, tripping over an obstacle, or

walking on a slipper surface. Under these circumstances, postural

adjustments tend to occur in response to perturbations which may be more

challenging to balance, particularly if they are unexpected, than those

associated with self-initiated movements. 

Most studies that have investigated perturbed stance assessed the

human PCS descriptively. McIlroy and Maki (1996) assessed stepping

responses in young and older adults where anterior-posterior (AP)

perturbation was applied to the platform on which they stood by counting

the number of steps they made. Hsiao and Robinovitch (1998) applied

translational support to standing subjects. They categorized types of falls

by visual inspection and found that body segment movements during falls

are repeatable series of responses rather than random and unpredictable

ones. Roger et al. (2001) used a waist-pull apparatus to displace the

subject s COM in the AP direction at different velocities. They measured

the foot placement and body COM sway when subjects made the first step. 
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Owings et al. (2001) had subjects stand on a motorized treadmill and

maintain their balance in response to posterior translation of treadmill, then

continue walking forward. The magnitude of the backward translation was

sufficient to initiate steps. They measured reaction time, step length and

trunk flexion angle.

Masani et al. (2006) investigated the robustness space of the human

PCS. They modeled the human PCS with a single-link inverted pendulum

modulated by a time-delayed proportional-derivative (PD) controller. They

constructed robustness space by varying control gains based on gain and

phase margins. However, no work on the robustness of the human PCS to

external perturbation has been done.

1.2 Objectives of this Book

The aim of this book was to develop mathematical methods to assess and

quantify the human PCS. This book addressed the following specific

objectives. 

(1)To develop a systematic method for analyzing and quantifying the

robustness of the human PCS during mildly perturbed stance.

(2)To develop a stochastic model to understand the human PCS during

quiet standing. 

(3)To apply the developed methods to real world problems.  

1.3 Organization of this Book

Part I of this book presents the development of methods to assess the

human PCS in both quiet and perturbed stance. In Chapter 2, a systematic

method for analyzing the human PCS during perturbed stance is presented. 

A mild impulsive perturbation that a subject might experience in their daily

lives is used. A robustness measure, 1/MaxSens, is introduced. In Chapter 3, 
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a stochastic model is used to provide a better understanding of the human

PCS using a dynamical systems approach. This methodology also has the

advantage over previous methods in that the sway behavior is captured in a

model that can be used to recreate the random oscillatory properties of the

PCS. The invariant density which describes the long-term stationary

behavior of the COP is computed from a Markov chain model that was

applied to postural sway data during quiet stance. In order to validate the

Invariant Density Analysis (IDA), we apply the technique to COP data

from different age groups. In Chapter 4, we investigate how 1/MaxSens

and IDA in AP direction are correlated. We also compare the entropy term

from IDA (which is also considered Shannon entropy) and sample entropy

(SpEn).

Part II of this book presents applications of the methods developed in

Part I. In Chapter 5, both 1/MaxSens and IDA are applied to a population

of firefighters to investigate the effects of air bottle configuration and

vision on the postural stability and robustness of firefighters. In Chapter 6, 

IDA is applied to a large cohort of a population of community-dwelling

elderly adults that were studied in the MOBILIZE Boston Study. In

Chapter 7, conclusions and future directions for this research are presented. 
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Part I DEVELOPMENT OF TOOLS
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2 MEASURING ROBUSTNESS OF THE POSTURAL
CONTROL SYSTEM TO A MILD IMPULSIVE
PERTURBATION1  

2.1 ABSTRACT

We propose a new metric to assess robustness of the human postural

control system to an impulsive perturbation (in this case, a mild backward

impulse force at the pelvis). By applying concepts from robust control

theory, we use the inverse of the maximum value of the system s

sensitivity function (1/MaxSens) as a measure for robustness of the human

postural control system, e.g., a highly sensitive system has low robustness

to perturbation. The sensitivity function, which in this case is the frequency

response function, is obtained directly using spectral analysis of

experimental measurements, without need to develop a model of the

postural control system. Common measures of robustness, gain and phase

margins, however require a model to assess system robustness. To examine

the efficacy of this approach, we tested thirty healthy subjects across three

age groups: young (YA, 20-30 years), middle-aged (MA, 42-53 years), and

older adults (OA, 71-79 years). The OA group was found to have reduced

postural stability during quiet stance as detected by center of pressure

measures of postural sway. The proposed robustness measure of

1/MaxSens was also found to be significantly smaller for OA than YA or

MA (p=0.001), implying reduced robustness among the older subjects in

response to the perturbation. Gain and phase margins failed to detect any

age-related differences. In summary, the proposed robustness

characterization method is easy to implement, does not require a model for

the postural control system, and was better able to detect differences in

1 For an updated version, please refer to Hur et al. (2010). 
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system robustness than model-based robustness metrics. 

Keywords: balance; impulse response; robustness; stability; postural

control

2.2 INTRODUCTION

The word stability which is defined as the ability of a system to

maintain equilibrium has been frequently used to characterize human

postural behavior. For example, aging and visual input have been reported

to modify postural stability (Barin, Jefferson, Sparto, & Parnianpour, 1997;

J J Collins & De Luca, 1995; J J Collins, De Luca, Burrows, & Lipsitz, 

1995; Maki, Holliday, & Fernie, 1990; Prieto, Myklebust, Hoffmann,

Lovett, & Myklebust, 1996). Along with stability, robustness is frequently

used to describe a controlled system, but not necessarily the human

postural control system. Robustness is the quality of being able to

withstand a perturbation in order to satisfy the performance specification

(Skogestad & Postlethwaite, 1996). Besides providing simple yes/no

information about whether a closed-loop system is stable, robustness also

provides a clear indication of how close the system is to instability (Levine, 

1996). Therefore, robustness measures give more information on the

human postural control system performance than stability criterion alone. 

systems theory, where metrics have been developed to measure and

quantify sensitivity of a dynamic system to modeling uncertainties such as

external disturbances. These metrics enable quantification and comparison

of the relative stability of different systems (Franklin, Powell, & Emami-

Naeini, 2002). Recently, Masani et al. (2006) outlined the robust space for
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a model of the postural control system based on a time-delayed

proportional-derivative (PD) controller by computing the gain and phase

margins of the systems. This work demonstrated validity of a PD-control-

based model of the human postural control system, but did not evaluate its

robustness to external perturbations. Peterka (2002) developed a postural

control model for upright stance during a persistent perturbation (rotating

support surface and/or visual surround) using a spectral analysis system

identification technique (Ljung, 1999; R J Peterka, 2002). However, the

robustness of the postural control system to external disturbances was also

not studied in this work. 

In this study, we define robustness of the human postural control

system as the measure that quantifies how insensitive the human postural

control system is to perturbations. With this definition, we will discuss the

sensitivity function. The sensitivity function describes how a system output

is proportional to various frequency contents of external perturbations. A

greater value of the sensitivity function at a given frequency implies that it

is more sensitive to disturbances having that frequency component. A

greater sensitivity also indicates a more sensitive or less robust system that

is closer to instability. The sensitivity function of a closed-loop system can

be calculated by examining the output response of the system to a known

input perturbation. Even though gain and phase margins are popular

measures for robustness, the sensitivity function is a direct and more

accurate measure of robustness (Skogestad & Postlethwaite, 1996). This is

because gain and phase margins depend upon the specific model of the

control system. Therefore, the reliability of the gain and phase margins as

measures of robustness is affected by the accuracy of the control model. In

contrast, the sensitivity function defined in this paper is independent of the
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specific postural control model, since it relates only the output response to

the input perturbation. 

Previous studies of dynamic postural control have focused mainly on

using persistent perturbations, such as continuous translations or rotations

of a moving platform to perturb balance (Ishida, Imai, & Fukuoka, 1997;

Johansson, Magnusson, & Akesson, 1988; Prioli, Freitas Junior, & Barela,

2005; Teasdale & Simoneau, 2001). However, real-life loss of balance is

typically sudden, caused by impulses such as a slip while walking or a

bump while standing on a bus. Therefore, it is important to understand how

balance and postural control mechanisms respond to unexpected and

transient disturbances. Studies that have used impulse perturbations have

not addressed subject response from a control-systems perspective, but

have rather focused on the whole-body and included how joint kinematics

or kinetics, muscle activation, and system dynamics are affected by the

disturbance (Bortolami, DiZio, Rabin, & Lackner, 2003; Krebs, McGibbon, 

& Goldvasser, 2001; Matjacic, Voigt, Popovic, & Sinkjaer, 2001; Rietdyk, 

Patla, Winter, Ishac, & Little, 1999; Stirling & Zakynthinaki, 2004; Wilson, 

Madigan, Davidson, & Nussbaum, 2006). In this investigation, both the

impulse loading and impulse response control-theory paradigm are used to

examine the postural control system and its response to a mild backward

tug at the pelvis. 

In this study, we propose that the robustness of the postural control

system to a mild impulsive backward perturbation be assessed using a new

metric, 1/MaxSens. Robustness is the inverse of sensitivity, i.e., a highly

sensitive system has low robustness to perturbation and vice versa. It

robustness by

determining the inverse of the maximum value of the sensitivity function. 
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The efficacy of this assessment method was then evaluated using

experimental data.

2.3 METHODS

The sensitivity function of the postural control system to a mild

impulse force was determined using spectral analysis system identification

techniques. The robustness of the system was quantified from the inverse

of the maximum value of the sensitivity function. This assessment method

was evaluated using experimental data from young, middle, and older

healthy adults. In the experiments, a single impulse force was applied at

the pelvis to produce a mild sway response about the ankle. Additionally,

the postural control system was modeled using a controlled single link

inverted pendulum in order to calculate gain and phase margins of the

modeled system. These more traditional metrics of robustness were then

compared to the results calculated using the sensitivity function. 

2.3.1 Determination of the sensitivity function

2.3.1.1Frequency response function

Spectral analysis system identification (Ljung, 1999; R J Peterka,

2002) was used to compute the frequency response function, which

expresses the structural response of the system to an input in the frequency

domain. The input and output signals of the model are the impulsive tug

force (F) and body lean angle ( ), respectively. Therefore, the sensitivity of 

the body to the tug force is characterized by the closed-loop transfer

function (frequency response) from the input F (tug force) to the output

(lean angle). We refer to this transfer function as the sensitivity function (R

J Peterka, 2002; Skogestad & Postlethwaite, 1996). 
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2.3.1.3Definition of robustness (1/MaxSens)

We propose a metric based on the sensitivity function to quantify the

robustness of the postural control system. More specifically, the maximum

value of the sensitivity function (MaxSens) represents the amplification of

the worst-case disturbance (corresponding to the most sensitive

frequency); therefore its reciprocal serves as a good metric for robustness

(Skogestad & Postlethwaite, 1996). This choice is apt for the robustness

analysis of postural control systems since disturbances with appreciable

- stability of a posture. 

Additionally, this metric does not suffer from the disadvantages of other

popular measures of robustness (e.g., gain/phase margin). Generally, larger

gain and phase margins suggest a more robust system. However, large gain

and phase margins do not always guarantee robustness of the system. 

Figure 2.1 shows an example of a Nyquist plot with excellent gain and

phase margins but where a relatively small combined perturbation of gain

and phase suffices to destabilize the system. The distance of the Nyquist

plot trajectory away from -1, which is equivalent to 1/MaxSens (Skogestad

& Postlethwaite, 1996), directly represents the robustness. Therefore, a

high value of 1/MaxSens guarantees robustness. Also since we are

investigating robustness with respect to a tug, which can be thought of as

an approximation of an impulse function whose spectrum spans the infinite

-

possible cases than persistent excitations whose frequencies are weighted

around their fundamental harmonics. This generality, in addition to the fact

that the causes for loss of postural balance are typically sudden, reinforces

our choice of impulse function for investigation. 
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using an ankle strategy, that is, postural movement was predominantly

controlled by ankle joint torque (F B Horak & Nashner, 1986). In this

model, the height of the body center of mass (COM) above the ankle is

represented by h and is approximated as 0.559 of the subject s height

(Hasan et al., 1996). Mass m i

inertia about the ankle is given by J = mh2. The sensory system along with

the control system (i.e., combined vestibular, visual, and proprioceptive

systems) is modeled by a unit-gain feedback system as shown in Figure 2.2. 

Three torque components (perturbed, active, and passive) are summed

to create the corrective torque applied to the pendulum. The input tug force, 

a backward impulsive force (F) applied at the waist of the subject, is

transformed to a perturbation torque through a scaling factor (Kf) that

represents the lever arm h of the tug force around the ankles. Active torque

due to neural control is modeled by a PD controller with proportional and

derivative gains Kp and Kd and time delay . PD-based control models have

been validated through experiments as described in (Masani, Popovic, 

Nakazawa, Kouzaki, & Nozaki, 2003; Morasso & Schieppati, 1999; R J

Peterka, 2002). The time delay is introduced to account for sensory

transmission, signal processing in the brain, and muscle activation delays

(Masani et al., 2006; R J Peterka, 2002). Passive torque due to

musculoskeletal stiffness and damping properties of the ankle complex are

modeled as a passive torque generator with stiffness (k) and damping ratio

(b) (R J Peterka, 2002). 
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Figure 2.2: Block diagram of the postural control system in the Laplace domain. PD
control with time delay, passive torque generator, and unity sensory feedback were used. 
Total corrective torque, Tcorrective, is sum of torque from active control, Tactive, torque
from passive control, Tpassive, and torque from the impulsive perturbation, Tperturbed

2.3.2.2Open loop transfer function

Gain and phase margins are derived from the open-loop transfer

function of the system. Gain and phase margins represent how far the

open-loop transfer function is from -1. Negative gain margin or phase

margin implies instability. For our modeled system, the open-loop transfer

function (OLTF) is:

2

s
p dK K s e k bs

OLTF
Js mgh

(2.4)

where g represents the gravitational acceleration (9.81 m/s2).

2.3.2.3Model-based sensitivity function and curve fitting

Model parameters (Kp, Kd, , k, and b) were identified by spectral

analysis system identification technique (Ljung, 1999). That is, model

parameters were identified such that the empirical sensitivity function (2.1)
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was best approximated by a model-based sensitivity function (2.5). We

defined the model-based sensitivity function as a transfer function between

the backward tug force and lean angle. The model-based sensitivity

function is given by

2
( )

( )
f

s
p d

K
S s

Js bs k mgh K K s e
(2.5)

The sensitivity function (2.5) was fit to the experimentally-

determined sensitivity function (2.1) using the MATLAB optimization

command fmincon (v2007a; The MathWorks, Natick, MA) with initial

values of the model parameters of Kp=1000 Nm/rad, Kd=400 Nms/rad, 

=100 ms, k=100 Nm/rad, and b=40 Nms/rad. The optimization cost

function (2.6) was defined as the error between the magnitude of the

modeled sensitivity and experimental frequency response function

normalized by the magnitude of the experimental frequency response

function and summed over all 20 discretized frequencies, which were

logarithmically spaced from 0.1 Hz to 3 Hz.

20
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H j
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Thus with the model parameters derived, it is possible to compute the

gain and phase margins from the OLTF (2.4). Gain margin is defined as the

magnitude of the OLTF (in dB) when the phase is -180°. Phase margin is

defined as the sum of 180° and the phase of the OLTF when its magnitude

is 0 dB (Franklin et al., 2002). Smaller gain and phase margins suggest that

the system is near instability. Negative gain and phase margins mean that

the system is unstable. 
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2.3.3 Experimental protocol

2.3.3.1Subjects

Thirty (14 males, 16 females) subjects participated in this study. 

Subjects were divided into three groups of ten subjects: young adults (YA),

middle-aged adults (MA), and older adults (OA). All other parameters of

gender, weight and height except age were matched as much as possible

such that there were no significant differences in these parameters except

age (Table 2.1). All subjects were community-dwelling and had no

neurological, gait, or postural disorders. Informed consent was given by all

subjects and the study was approved by the university institutional review

board. 

2.3.3.2Experimental procedure

Each subject performed twenty 30 sec trials randomized between 10 quiet-

standing and 10 perturbed trials. For all trials, the subject was instructed to

stand on a force platform (AMTI, model BP600900; Watertown, MA) in a

self-selected, comfortable stance with arms crossed at the chest while

looking ahead at a picture placed at eye level 3 m in front of the subject. A

for all trials. Subjects were instructed to stand quietly throughout the entire

trial. During perturbed trials, a mild, quick-release, backward tug was

applied to the pelvis (Hsiao-Wecksler et al., 2003). The test subject wore a

belt that was attached to a custom tug device via a loose tether such that

normal postural sway was unhindered before and after the tug (Figure 2.3).

To generate the impulse disturbance, a mechanical trigger was activated to

release a weight. After the brief tug, the mechanism allowed the tether to

quickly slacken, allowing the subject to adjust to an upright posture.
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Table 2.1: Subject demographics, mean ± S.E., for young adults (YA),

middle-aged adults (MA), and older adults (OA).

Parameter
YA MA OA

p-value*
n = 10 n = 10 n = 10

Females 5 5 6 --

Age (y) 22.9 ± 1.0 47.1 ± 1.2 75.6 ± 0.8 <0.001

Age Range (y) 20 - 30 42 53 71 79 --

Weight (kg) 69.3 ± 2.6 76.1 ± 4.1 70.0 ± 2.3 0.44

Height (cm) 170.0 ± 5.9 169.1 ± 3.8 164.0 ± 3.5 0.60

* p-value from ANOVA examining effect of age

Timing of the perturbation was randomized between 5-20 s after the start

of a trial so that the subject was not given cues as to if or when the tug

would occur during the trial. The perturbation magnitude was small

enough to only elicit a sway response about the ankles. Tug force was

measured from a load cell (PCB Piezotronics, model 208C02; Depew, NY).

Average tug force was 29.2N ± 3.9 N with a duration of 0.111 s ± 0.023 s. 

All force platform data were sampled at 1000 Hz and were low-pass

filtered at 10 Hz with a 4th order, zero-lag Butterworth filter. Force

platform data were used to compute anterior-posterior center of pressure

(AP COP). The COP is the location of application of the ground reaction

force vector on the force platform. Then, the AP position of the center of

mass (COM) was computed from AP COP and AP force data from the

force platform using a modified gravity line projection algorithm (Pilwon

Hur, Naito, & Hsiao-Wecksler, 2007). Even though there might be slight

inaccuracies in calculations by the gravity line projection algorithm during  
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Figure 2.3: (a) Experimental setup. The subject stood on a force platform, which
recorded COP. A load cell recorded the impulse force transmitted to a belt located at the
pelvis. The perturbation was created by activating a mechanical trigger that released a
2.3 kg mass and spooled the tether. After the mass fell, it became detached from the
spool such that the tether quickly slackened allowing the subject to re-adjust to an
upright posture. (b) Sample time series of impulsive tug force that illustrates the 5 s of
analyzed data. Positive force is in anterior direction

the periods when the impulsive perturbation is applied, these inaccuracies

can be ignored due to the small magnitude and short application period of

the impulsive force. Finally, the lean angle was computed from the AP

COM position (x) and h using the linearized relationship, h x . 

2.3.4 Supplemental balance parameters

Supplemental assessment of balance was done using quiet stance postural

sway measures of the COP. It has been shown that postural sway becomes
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significantly greater in older adults (Laughton et al., 2003; Prieto et al., 

1996; van Wegen, van Emmerik, & Riccio, 2002). In this study, traditional

and newer stochastic measures of quiet stance postural sway were

computed to compare balance or postural stability characteristics of our

test groups. Since postural sway information provides insight into the

system response to internal perturbation, we assume that greater postural

sway implies reduced robustness. 

2.3.4.1Traditional stabilometric parameters of quiet stance

COP data have typically been analyzed using measures that describe the

shape or speed of the trajectory. In this study, we examined seventeen

traditional (TRAD) parameters of COP (Oliveira, Simpson, & Nadal, 1996;

Prieto et al., 1996): standard deviation (SD), path length (PathLen), mean

sway velocity (MeanVel), mean frequency (MeanFreq), and 95% power

frequency (Freq95) in the one-dimensional anterior-posterior (AP) and

medial-lateral (ML), and the two-dimensional radial (Rad) directions. We

also examined the angular deviation of the principal sway direction from

the AP axis (AngDev) and total swept area (TotalArea).

2.3.4.2Stabilogram diffusion analysis for quiet stance

Collins and De Luca (J J Collins & De Luca, 1993) modeled the COP

trajectory as a correlated one or two dimensional random walk, and applied

a stabilogram diffusion analysis (SDA) to characterize short term (open

loop) and long term (closed loop) postural control mechanism. In our study,

we examined twelve parameters: short term (DS) and long term (DL)

diffusion coefficients, and short term (HS) and long term (HL) scaling

exponents in AP, ML, and Rad directions. 
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2.3.5 Statistical analysis

One-way analysis of variance (ANOVA) was used to examine whether

1/MaxSens, gain margin, phase margin, model parameters, TRAD and SDA

parameters of quiet-stance sway were affected by the factor of age (YA, 

s Honestly Significant Differences (HSD) test was

0.05. Statistical analyses were run on SPSS (SPSS Inc., Chicago, IL; v15).

2.4 RESULTS

ANOVA test results for the newly proposed robustness metric, 1/MaxSens,

found significant age-related differences (Table 2.2, p=0.001). Mean and

standard error values of 1/MaxSens for young adult (52.82 ± 0.73 dB) and

middle-aged adult (53.81 ± 0.93 dB) groups were similar to each other;

however, 1/MaxSens for older adults (48.15 ± 1.23 dB) was significantly

smaller. Post hoc tests revealed statistically significant differences between

YA and OA, and MA and OA, but not YA and MA. This result suggests

that the robustness of the OA group to mild perturbations was significantly

reduced compared to both YA and MA, while there was no difference in

robustness between YA and MA. 

No statistically significant differences (p>0.05) due to age, however, 

were found for traditional robustness measures of gain and phase margins.

Still, values of these metrics for the older adult group suggest slightly

reduced postural control performance compared to young and middle-aged

adults, i.e., smaller values for gain margin and phase margin (Table 2.2).

Statistically significant differences (p<0.05) in supplemental quiet-stance

(TRAD and SDA) balance parameters were found between age groups

(Table 2.3). Significant differences in parameter values were found  
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Table 2.2: Model-based measures, mean and ± S.E., for young adults (YA), middle-
aged adults (MA), and older adults (OA).

Parameter
YA MA OA

p-value*
n = 10 n = 10 n = 10

1/MaxSens (dB) 52.82 ± 0.73 53.81 ± 0.93 48.15 ± 1.23 0.001

GainMargin (dB) 6.97 ± 0.46 7.07 ± 0.79 6.53 ± 0.71 0.84

PhaseMargin (deg) 23.77 ± 1.10 25.40 ± 1.33 22.78 ± 1.37 0.35

Kp (N m/rad) 952.77 ± 36.65 991.32 ± 31.92 841.33 ± 27.35 0.06

Kd (N m s/rad) 318.71 ± 23.15 358.50 ± 18.17 278.07 ± 32.85 0.10

(ms) 116.65 ± 3.92 112.3 ± 4.28 136.67 ± 11.13 0.06

k (N m/rad) 67.89 ± 14.83 99.97 ± 19.01 39.11 ± 24.00 0.11

b (N m s/rad) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -

* p-value from ANOVA examining effect of age
YA and OA are significantly different, based on Tukey HSD post-hoc test
MA and OA are significantly different, based on Tukey HSD post-hoc test

between YA and OA, and MA and OA, but not YA and MA. These results

indicated that OA swayed significantly farther and faster than YA and MA,

especially in the anterior-posterior and radial directions.

The mathematical model of a single link inverted pendulum with PD

controller, time delay, passive torque generator, and unity sensory feedback

was found to represent the human postural control system quite well

(Figure 2.4). There were no statistically significant differences due to age

in model parameters (Kp, Kd, k, b, ).

2.5 DISCUSSION

We proposed that the robustness of the system could be quantified

using the sensitivity function; specifically the reciprocal of peak magnitude

of the sensitivity function (1/MaxSens). Since robustness has been defined

as a measure that quantifies how insensitive the human postural control  
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Table 2.3: Statistically significant traditional (TRAD) and stabilogram diffusion
analysis parameters (SDA) stabilometric parameters of quiet-stance sway, mean and ±
S.E., for young adults (YA), middle-aged adults (MA), and older adults (OA). 

Parameter
YA MA OA

p-value*
n = 10 n = 10 n = 10

TRAD

SDML (mm) 19.94 ± 3.32 13.53 ± 1.27 27.78 ± 4.05 0.012

PathLenAP (mm) 2377.09 ± 198.90 2291.35 ± 151.97 3125 ± 246.06 0.013

PathLenRad (mm) 2898.14 ± 242.94 2791.12 ± 152.53 3671.65 ± 300.93 0.030

MeanVelAP (mm/s) 79.24 ± 6.63 76.38 ± 5.07 128.41 ± 20.51 0.012

MeanVelRad (mm/s) 96.60 ± 8.10 93.04 ± 5.08 150.95 ± 24.62 0.020

MeanFreqAP (rad/s) 7.84 ± 0.49 7.81 ± 0.51 10.21 ± 0.95 0.028

Freq95AP (rad/s) 9.19 ± 0.44 9.69 ± 0.61 11.82 ± 0.91 0.027

TotalArea (mm2) 3464.44 ± 647.62 2732.79 ± 322.05 5228.73 ± 848.03 0.031

SDA

DSAP (mm2/s) 12.72 ± 2.36 10.41 ± 1.15 25.48 ± 7.14 0.048

HLAP 0.19 ± 0.026 0.21 ± 0.032 0.083 ± 0.022 0.005

HLRad 0.19 ± 0.025 0.21 ± 0.029 0.10 ± 0.020 0.012

HSML 0.86 ± 0.011 0.89 ± 0.010 0.84 ± 0.012 0.019

* p-value from ANOVA examining effect of age
YA and OA are significantly different, based on Tukey HSD post-hoc test
MA and OA are significantly different, based on Tukey HSD post-hoc test

system is to perturbations, the sensitivity function which is a frequency

response to an impulsive perturbation could serve as a robustness

quantifier. Thus, a more robust system has a greater value of 1/MaxSens. 

To test this idea, we conducted a cross-sectional study involving young, 

middle-aged, and older adults. Results from the supplemental balance

measures indicated that there were significant differences in quiet-stance

postural sway and stability between the older adult group and both the

young and middle-aged groups (Table 2.3). Our proposed metric of
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robustness, 1/MaxSens, detected similar age-related differences, such that

OA also demonstrated less robustness to postural disturbances than YA and

MA (Table 2.2).

Model-based gain and phase margins are the most frequently used

metrics for measuring robustness of a system. OA tended to have slightly

smaller gain and phase margins compared to YA and MA; however, these

were not significantly different (p=0.8 for gain margin and p=0.4 for phase

margin). 1/MaxSens, however, indicated statistically significant differences

between OA and both YA and MA (p=0.001), demonstrating that

1/MaxSens is a better discriminator of age-related changes. This suggests

that the sensitivity function, and more specifically the 1/MaxSens value, is

a better measure for robustness of the postural control system to mild

perturbations. It should be noted that the above conclusion is validate only

for models that assume that all the subjects used an ankle strategy to

control posture. Since it has been suggested that older adults may use a hip

strategy more often than young populations (Manchester, Woollacott, 

Zederbauer-Hylton, & Marin, 1989), gain and phase margins could

possibly provide more meaningful results in measuring robustness of the

human postural control system when a two-link model of hip strategy is

used. However, given the assumption of ankle strategy, even though both

gain and phase margins and 1/MaxSens can be used for robustness

measures, 1/MaxSens could be a better robustness measure in the sense

that postural control systems are closed-loop systems and 1/MaxSens can

capture the worst-case margin. Furthermore, in the context of the definition

of robustness of the human postural control system in this paper, 

1/MaxSens may be a better robustness measure.
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Figure 2.4: Example of Bode plots of the frequency response function (FRF) from
experimental data of a young adult (×), sensitivity function (solid line) which best fit
the FRF. Error bars represent one standard deviation. Experimental data are averaged
over ten FRF of a single subject

In the current study, we additionally introduced a mathematical model

of postural control system in order to compute gain and phase margin. We

represented the body and postural control system with a single link

inverted pendulum modulated by an active time-delayed proportional-

derivative (PD) controller, passive torque generator, and negative unity

sensory feedback loop (Figure 2.2). In this model, we assume that the body

responded to the perturbation as a single link inverted pendulum. The

impulse force in the current study is of a small magnitude in order to limit

the amount of hip and knee flexion used when responding to the
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perturbation; therefore, it is assumed that the subject uses an ankle strategy

and rotates only about the ankles. A number of studies have used PD

controllers and found that a PD controller can represent the postural

control system quite well (Masani et al., 2003, 2006; Morasso &

Schieppati, 1999; R J Peterka, 2002). Although our perturbation differed

from those conditions, this model appears to be a good approximation for

representing the behavior of the postural control system during the

response to an impulse disturbance (Figure 2.4). The model parameters

found in this study (Table 2.2) were in good agreement with previous

studies that used time-delayed PD controlled models of the postural control

system. Peterka (2002) and Masani et al. (2006) found similar values for

the controller parameters (Kp : 570-1200 and 750-1150 N m/rad, Kd : 170-

515 and 300-550 N m s/rad, and : 140-250 and 75-135 ms, respectively).

Among these parameters, we found that Kd was the most significantly

correlated (r=0.77) with 1/MaxSens suggesting that velocity information of

angular deviation from the equilibrium point plays important roles for

maintaining robustness of the human upright stance using ankle strategy. 

This result is supported from the previous study (Masani et al., 2003) that

body sway velocity information is important in controlling ankle extensor

during quiet stance. was also significantly correlated (r=0.70) with

1/MaxSens implying that time delay can significantly affect robustness of

the human postural control system. 

There has been limited research investigating how the postural control

system responds to an impulsive perturbation. Previous studies using

impulse perturbations have focused on whole-body kinematics, muscle

activation, and the sway-to-step transition (Bortolami et al., 2003; D. E. 

Krebs et al., 2001; Matjacic et al., 2001; C. McGibbon et al., 2005;
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Rietdyk et al., 1999; Stirling & Zakynthinaki, 2004; Wilson et al., 2006).

We addressed these deficiencies by using a backward, quick-release tug at

the waist to explore the AP postural sway response to an impulse

perturbation. 

Recent experimental studies report that postural sway behavior in the

medial-lateral (ML) direction may be a better indicator of fall risk than the

anterior-posterior (AP) direction (for review see (Piirtola & Era, 2006)).

Our study applied system identification of the postural control system only

in the AP direction and proposed 1/MaxSens to quantify robustness of the

system to the external perturbation. The same methodology can be applied

to assessments in the ML direction. Future studies comparing 1/MaxSens

values and other control parameters of postural control systems in both AP

and ML directions may help improve understanding about why the ML

direction may be a better indicator of fall risk compared to the AP direction.

In conclusion, a metric for measuring robustness of the postural

control system 1/MaxSens is proposed. 1/MaxSens was derived from the

sensitivity function which is actually the frequency response function. 

Greater values of 1/MaxSens suggest greater system robustness or less

system sensitivity to an external perturbation. Age-related changes in the

postural control system were detected by 1/MaxSens. This finding was

verified by supplemental balance parameters; however, model-based

metrics, gain and phase margin, failed to detect differences. Importantly, 

1/MaxSens provides a measure of robustness of a system without need for

developing computational models of the system. Therefore, regardless of

the structure of the controller in the feedback loop, the closed-loop

sensitivity function can be derived experimentally from the frequency

response function. These features make 1/MaxSens an easy to use and
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more effective robustness measure.
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3 INVARIANT DENSITY ANALYSIS: MODELING AND
ANALYSIS OF THE POSTURAL CONTROL SYSTEM
USING MARKOV CHAINS2

3.1 ABSTRACT

In this paper, a novel analysis technique Invariant Density Analysis (IDA)

is introduced. IDA is used to quantify steady-state behavior of the postural

control system using center of pressure (COP) data collected during quiet

standing. COP, the location of the resultant ground reaction force

underneath an individual, is a common experimental variable for the study

of postural sway. IDA relies on the analysis of a reduced-order finite state

Markov model to characterize stochastic behavior observed during postural

sway. Five IDA parameters characterize the model and offer physiological

insight into the long-term dynamical behavior of the postural control

system. Two studies were performed to demonstrate the efficacy of IDA.

Study 1 showed that multiple short trials can be concatenated to create a

data set suitable for IDA, since COP data sets are often collected during a

series of short trials. Study 2 demonstrated that IDA was effective at

distinguishing age-related differences in postural control behavior between

young, middle-aged, and older adults. These results suggest that the

postural control system of young adults converges more quickly to their

steady-state behavior while maintaining the COP nearer an overall centroid

than either the middle-aged or older adults. Additionally, larger entropy

values calculated for older adults indicate that their COP follows a more

stochastic path, while smaller entropy values for young adults indicate a

more deterministic path. These results illustrate the value of IDA as a

quantitative tool for the assessment of the quiet-standing postural control

2 For an updated version, please refer to Hur et al. (2012). 
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system. 

Key Words: Center of Pressure, Balance, Stochastic mechanics, Postural

control

3.2 INTRODUCTION

Posturographic data collected during quiet stance using force platforms are

widely used to assess human postural control. In particular, examination of

center of pressure (COP) data is popular in both clinical and laboratory

settings. COP measures have been used to investigate human postural

control, sensorimotor-degradation due to aging, and balance disorders (J. H. 

Allum & Shepard, 1999; Benda, Riley, & Krebs, 1994; Goldie, Bach, &

Evans, 1989; Le Clair & Riach, 1996; Murray, Seireg, & Sepic, 1975;

Panzer, Bandinelli, & Hallett, 1995; Shan, Daniels, & Gu, 2004).

Traditionally, COP data have been analyzed using measures that describe

shape, speed or frequency content of the trajectory, such as standard

deviation, mean velocity, mean distance, total excursion length, range,

maximum distance, peak frequency, or mean frequency (Helene Corriveau, 

Hebert, Prince, & Raiche, 2001; R. J. Doyle, Hsiao-Wecksler, Ragan, &

Rosengren, 2007; Geurts, Nienhuis, & Mulder, 1993; Lafond, Corriveau, 

Hebert, & Prince, 2004; Prieto et al., 1996; Samson & Crowe, 1996).

Unfortunately, these parameters do not provide insight into the

physiological system as a whole and have been shown to have

questionable reliability (T. L. Doyle et al., 2005; Lafond et al., 2004;

Samson & Crowe, 1996). 

Stochastic models of the COP trajectory have been used to more fully

describe the quiet-standing postural control system. Collins and De Luca



36

(1993) modeled COP data as a nearly random walk. (A random walk in

this case is a mathematical model where at each step the point jumps to

another site according to some probability distribution.) They used

stochastic analysis techniques to quantify underlying deterministic

behavior in the data. In their work, Stabilogram Diffusion Analysis (SDA)

was used to identify regions of short term (open-loop) and long term

(closed-loop) postural control strategies during quiet standing. While SDA

characterizes time-dependent behavior of the COP trajectory, this

technique does not capture the positional dependence of the data.

Furthermore, SDA can only provide summary information about the

human postural control system; it cannot provide specific information

about or recreate the actual sway behavior (Newell et al., 1997). Ornstein-

Uhlenbeck processes have also been used to model COP data as a random

walk (Frank, Daffertshofer, & Beek, 2000; Newell et al., 1997). This

process models the apparent random walk of the COP trajectory as

Brownian motion and compares the current location to the long-term mean

of the converged trajectory. Newell et al. (1997) showed that the

stabilogram diffusion plots (J J Collins & De Luca, 1993) can also be

approximated by data generated by a linear Ornstein-Uhlenbeck equation. 

However, Ornstein-Uhlenbeck processes do not fully capture the variance

of the random walk. Additionally, a two-dimensional Langevin equation

has been used to model COP data as a random walk (Bosek, 

Grzegorzewski, & Kowalczyk, 2004). The Langevin equation models

Brownian motion in potential fields and formulates the equations of

motion for the COP trajectory from first principles (Gardiner, 1985).

Bosek et al. (2004) used a two-dimensional Langevin equation to

approximate the short-term region of the stabilogram diffusion plot. While
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these latter models (Bosek et al., 2004; Frank et al., 2000; Newell et al., 

1997) can detect deterministic behavior in the stochastic random walk of

the COP, they provide only a single control mechanism or governing

equation for the system. Furthermore, since the models were constructed

using a fit to the variance function of the diffusion process in the random

walk, they do not provide evolutionary properties of the time series data

(Newell et al., 1997). 

In this paper, a novel technique for the analysis of a reduced-order

model of the quiet-standing postural control system is introduced, Invariant

Density Analysis (IDA). This approach uses a reduced-order Markov chain

model of the COP trajectory, in place of closed-form equations, to describe

the evolution of the state (Dellnitz & Junge, 1997). IDA describes the

dynamics of the system itself and not just the statistical description of

system behavior as with traditional COP measures (e.g., Prieto et al., 1996)

IDA is interested in how the system evolves in terms of time (e.g., the

evolution of the probability distribution into the invariant density

distribution) and space (e.g., state-dependent transition probability) which

previous methods do not deal with. In Section 3.3, IDA parameters are

developed to characterize the Markov chain model and offer insight into

the long-term dynamical behavior of the postural control system. Finally, 

in Section 3.4, two experimental studies are used to develop and

demonstrate IDA. 

3.3 MATHEMATICAL BACKGROUND

The postural control system is a complicated dynamical system. It is

generally not possible to derive simple closed-form system models starting

from first principles. We therefore propose a data-driven approach to
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construct a reduced order Markov-chain model from COP data to

characterize the long-term behavior of the quiet-standing postural control

system. The COP was treated as an output of the dynamical system that

results from the stabilizing mechanisms of the human postural control

system. This approach has its roots in discretization of dynamical systems

using set oriented methods (Dellnitz & Junge, 1999). Here we present

background on system modeling, methods for construction of a discrete

Markov chain model from COP data, the calculation of the invariant

density, and the introduction of Invariant Density Analysis (IDA) to

characterize the postural control system during quiet stance.

3.3.1 System Modeling

Dynamical systems have been approximated using mathematical models to

describe the states of the system and evolution of those states. The

evolution of the system can be a deterministic or stochastic process. 

Deterministic models have only one possible future state that evolves from

the current state (e.g., differential equations that describe the motion of a

pendulum). Stochastic models have several potential states, and the

likelihood that the stochastic system evolves to a particular state can be

described using a probability distribution. A stochastic process is

considered to be a Markov chain if future states are independent of all

past states and therefore only relies on the present state (J. R. Norris, 1998).

That is, X is a Markov chain if 

P(Xn+1=xn+1 | Xn=xn, , X0=x0)=P(Xn+1=xn+1 | Xn=xn) (3.1)
   

for a stochastic process X=(X1,X2, with state space X and probability
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measure P. A one-step evolution of the state is called a transition, and the

probabilities associated with possible state transitions are called transition

probabilities. Assuming that there is a finite set of states, the transition

probabilities can be expressed in a transition matrix, P. The transition

probabilities in P govern the evolution of the Markov chain, and the

probability distribution evolves as

n n P (3.2)
      

where n is the distribution of the state at the n-th iteration. If the Markov

chain is irreducible and recurrent (J. R. Norris, 1998), n converges to a

unique steady state distribution , which is also equivalent to the left

eigenvector of P with eigenvalue 1:

= P (3.3)
is referred to as the invariant density. is important because it does not

depend on the initial system distribution and defines the long-term system

behavior. The invariant density can be computed directly from time series

COP data, but a discrete Markov chain model was used here because the

Markovian framework provides additional information about the

dynamical behavior of the system (e.g., rate of convergence (2nd

eigenvalue of P) and the entropy of the system).

3.3.2 IDA Analysis

3.3.2.1Markov Chain Model Construction From Data

In this study, discrete Markov chain model were used to extract

dynamical information from COP data. For each COP data set, the Markov

model and invariant density were constructed in the following manner. 
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First, the COP data were zero-mean adjusted to the centroid of the data. 

The state space was partitioned and discretized by concentric circles

emanating from the centroid with radii increasing from 0.0 mm by steps of

0.2 mm. (The width of the rings was determined by the level of noise

measured from our force platform during a static weight calibration.)

Second, the transition matrix P was constructed by computing transition

probabilities for all states. Figure 3.1(a) is a simplified illustration of the

finite state space used to construct the transition matrix for the model. In

this example, the state space has been discretized into four states (rings 1-

4). The 4×4 transition matrix P that describes the state transitions of the

COP for this example is given in Figure 3.1(b). Third, the invariant density, 

, was computed by solving for the left eigenvector of P, with an

eigenvalue of one; thus describes the probability of finding the COP in a

given state.

3.3.2.2Parameterization

Five parameters were used to characterize the discrete Markov chain

model and offer insight into the physiology of the system. 

1. Ppeak: Largest probability of the invariant density. A larger

Ppeak value indicates a higher probability that the COP will be

driven to a particular state. It is unitless. 

2. MeanDist ( )
i I

i i : Weighted average state (or average location)

of the COP, where I is the set of all possible states. MeanDist is a

measure of the average distance that the COP moves away from

the centroid. Larger values signify greater average travel of the
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4. EV2: Second largest eigenvalue of the transition matrix. This

corresponds to the rate of convergence to the invariant density.

EV2 describes how quickly the COP will reach its invariant

distribution and how sensitive the process is to perturbation

(Funderlic & Meyer Jr, 1986). A smaller EV2 indicates a lower

sensitivity. It is unitless. 

5. Entropy ( 2( ) log ( )
i I

i i ): Measure of randomness or

uncertainty of the system; low entropy corresponds to a more

deterministic system and high entropy refers to a more stochastic

system. This parameter is equivalent to the concept of Shannon

entropy (Shannon, 1948). It is unitless. 

Figure 3.2 shows a plot of two invariant densities and associated IDA

parameters (Ppeak, MeanDist, and D95) that can be identified on the

invariant density plot.  

3.4 EXPERIMENTAL STUDIES

Two experimental studies were used to determine the efficacy of the IDA

approach. Study 1 was conducted to determine if data from multiple short

trials could be combined to create a data set of sufficient length for IDA.

Since IDA examines long term quiet-standing behavior, it requires COP

data on the order of minutes. Combining multiple short trials into a single

long trial was of interest because COP data are commonly collected from

multiple trials in durations on the order of seconds. We examined whether

or not the invariant densities based on ten 30 second trials was statistically

different from a single 5 minute trial. A secondary outcome of this study

was the identification of the minimum time required to reliably compute

the invariant density. 
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Figure 3.2 An example plot of the invariant densities and IDA parameters of both a
young (YA, solid) and old (OA, dashed) adult subject showing the probability of the
location of their COP. 

Study 2 examined whether IDA parameters can explain age-related

changes seen in postural control behavior. Quiet-standing trials were

conducted by adult subjects from three age groups: young, middle-aged, 

and old. Age-related changes to the postural control system, as assessed

through previous measures of COP, have resulted in greater postural sway

(Amiridis, Hatzitaki, & Arabatzi, 2003; Barin et al., 1997; J J Collins et al., 

1995; Du Pasquier et al., 2003). 

For both studies, subjects had no balance issues and no history of

significant trauma to the lower extremities or joints. All procedures were

approved by the university Institutional Review Board, and all participants

gave informed consent. For all trials, the subjects were instructed to stand

quietly on a force platform (AMTI, model BP600900; Watertown, MA).

Each subject self-selected a comfortable stance on the platform and stood

with arms crossed at the chest while looking at a picture placed at eye level
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3 m in front. Foot tracings were made to ensure foot position when the

subject stepped off the platform to be re-zeroed between each trial. Data

were sampled at 1000 Hz. (Even though 1000 Hz sampling rate would

generate more accurate invariant density, 100 Hz sampling rate could still

be used since both provide similar invariant density.) Force platform data

were not filtered because the discretized state space takes into account

noise present in the data.

One-way analysis of variance (ANOVA) was used to test for

differences between IDA parameters determined from one 5 min trial or

ten 30 s trials in Study 1, and age in Study 2 (SPSS Inc., Chicago, IL; v15).

Tukey's Honestly Significant Differences (HSD) tests were used for post-

3.4.1 Study 1 IDA Validation

Ten young adult subjects were recruited for Study 1. Five male subjects of

mean (standard deviation) height 182.3 (4.6) cm, weight 77.6 (4.8) kg, age

22.2 (3.83) yrs and five female subjects of mean height 159.0 (4.5) cm, 

weight 61.0 (5.5) kg, age 21.2 (1.79) yrs participated in Study 1. Each

subject performed the ten 30 s trials followed by the 5 min trial. 

The ten 30 s trials were combined into a single 5 min trial using the

following approach. COP data were zero-mean adjusted about the data

centroid. Then, the ten trials were concatenated with each other. Because

we were interested in the distribution of the points in the predetermined

states and not the continuity of the COP trajectory, discontinuities between

the ten 30 s trials will not affect the analysis. Quiet-standing COP data

from the 5 min trial and the ten concatenated trials compared well. The
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Table 3.1 Comparison of IDA parameters for ten 30 s trials and one 5 min trial (Mean ±
SD)

Ten 30 s trials One 5 min trial p*

Ppeak 0.047 ± 0.015 0.053 ± 0.060 0.76

MeanDist 3.62 ± 1.12 4.37 ± 1.19 0.16

D95 9.44 ± 3.59 10.43 ± 2.73 0.50

EV2 0.997 ± 0.002 0.997 ± 0.003 0.86

Entropy 5.41 ± 0.50 5.46 ± 0.89 0.86

* p-value from ANOVA examining effect of concatenating ten 30 s trials

invariant densities and IDA parameters from the concatenated 30 s trials

and the single 5 min trial were examined. The ANOVA found no

significant differences between the concatenated and the continuous time

trials (p>>0.05, Table 3.1). Therefore, the concatenated data can be used to

determine IDA parameters.

its invariant density the 5 min trial was broken into ten intervals of

increasing length, such that the 30s trial was calculated using the first 30 s, 

the 60s trial used the first 60 s, etc. IDA analysis was applied to each

interval. The duration of time required for the error norm to reach within

5% of the value calculated from the 5 min (300 s) steady state data was

identified as sufficiently long to compute the invariant density. The error

norm was defined as follows. 

2
5

, ,300

1 , ,

100% ( , 30,60,90,...,300)
max min

i j i
j

i i k i kkk

Param Param
E j k

Param Param (3.4)
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where, Parami,j is the i-th parameter value for j seconds (i = Ppeak, 

MeanDist, D95, EV2, Entropy). Normalized values are used in (3.4). It was

found that the error norm entered the 5% threshold by 210 s of data (Figure

3.3).

3.4.2 Study 2 IDA Analysis of the Effect of Age on Quiet Stance

Data from a previous study (Chapter 2) of 45 subjects were used for the

second study. Subjects were divided into three groups: young (YA, age:

19-30 years, height 168.8 (13.0) cm, weight 67.0 (9.5) kg), middle-aged

(MA, age: 42-53 years, height 171.3 (9.5) cm, weight 76.3 (14.8) kg), and

old adults (OA, age: 62-80 years, height 164 (1) cm, weight 76.9 (17.1)

kg). Ten 30 s trials were collected from each subject. Based on the results

from Study 1, the data for each subject were concatenated to construct the

discrete Markov chain models used to compute subject-specific IDA

parameters.  

Significant age-related differences for all five IDA parameters were

found, Table 3.2. Post-hoc tests revealed statistically significant differences

between young and old adults for all IDA parameters, and between young

and middle-aged adults for two parameters (Ppeak and Entropy). Ppeak

was found to be larger and Entropy was smaller for YA compared to MA

and OA. MeanDist, D95, and EV2 were smaller for YA compared to OA. 

There were no significant differences in IDA parameters between middle-

aged and older adults. 
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Furthermore, Study 1 determined that 210 s of COP data was the minimum

time required for reliable computation of IDA parameters, Figure 3.3. 

In Study 2, IDA showed significant differences between data from

young, middle-age, and old adults. Differences between young and old

adults were most apparent (Figure 3.2, Table 3.2). For the young adults, 

Ppeak was significantly larger, while both MeanDist and D95 were

significantly smaller than the older population. Larger Ppeak and smaller

MeanDist values result from invariant densities with noticeable peaks in in

the probability distributions located close to the centroid. In contrast, the

OA group had smaller peaks and more uniform distributions. Additionally, 

larger MeanDist and smaller Ppeak values in OA illustrate that the COP

wanders further from the centroid and was less likely to be found in any

particular state. The larger Entropy value for OA indicates that the COP

follows a more stochastic path, while a smaller Entropy value for YA

indicates more deterministic information in the data. This can be

COP close to the centroid. Finally, the second eigenvalue, EV2, was

significantly smaller for YA indicating that their COP data converges more

quickly to steady-state behavior. This result suggests that younger subjects

would be more robust to perturbation than older subjects, in the sense that

a mildly perturbed PCS with smaller EV2 can return to steady state faster

than a system with a larger EV2 value (Funderlic & Meyer Jr, 1986). The

MA group also had significantly smaller Ppeak and larger Entropy values

than YA. Again, this indicates that the position of the COP for middle-

aged adults was less likely to be found in a particular state and more

stochastic.
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Table 3.2 IDA parameters for each age group. Mean ± SD

Young
n=15

Middle
n=15

Old
n=15

p*

Ppeak 0.052 ± 0.012 < 0.001

MeanDist 3.19 ± 0.70 3.70 ± 0.70 0.015

D95 7.99 ± 1.80 9.20 ± 1.80 0.017

EV2 0.995 ± 0.009 0.999 ± 0.001 0.034

Entropy 5.19 ± 0.36 < 0.001

* p-value from ANOVA examining effect of age

-aged adults are significantly different

The 95% confidence circle area has been used to quantify postural

sway (Prieto et al., 1996). The 95% confidence circle area is similar to D95

in the sense that D95 describes the distance to a concentric circle (or state)

at which there is a 95% probability of containing the COP. However, they

are different in that the 95% confidence circle area assumes that the data

are normally distributed. Therefore, D95 can be used without any

assumption of normal distribution since D95 is directly computed from

time series data.

Further investigation of the second eigenvector EV2 has the potential

to provide a more complete understanding of the embedded dynamics in

the reduced order model. Recently, the second eigenvector has been used

to formulate an intuitive understanding of the dynamics for a finite state-

space ergodic Markov chain by allowing the decomposition of the state

space into essential features (Dellnitz & Junge, 1997; Mehta, Dorobantu, 

& Banaszuk, 2006; Schutte, Fischer, Huisinga, & Deuflhard, 1999).
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Collins and De Luca (1993) observed two distinct regions of behavior in

quiet-standing COP data and postulated that there exist both open loop

control and closed loop control regimes present during quiet stance.

Careful investigation of the second eigenvector may give insight on the

transition between these two regimes. 

This paper introduced and demonstrated a new approach to

characterize and provide greater insight into the long-term dynamical

behavior of the postural control system, Invariant Density Analysis. IDA

successfully distinguished age-related differences in the dynamical

behavior of the postural control system. Future applications of this

technique have the potential to provide insight into changes seen in the

quiet-standing postural control system of other populations.  
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4 MORE ON THE METRICS

4.1 INTRODUCTION

In Chapters 2 and 3, two methods were developed and proposed to

quantify the human postural control system (PCS). 1/MaxSens from

Chapter 2 is a robustness measure to characterize how the human PCS

responds to impulsive external perturbation in the AP direction. 1/MaxSens

is the reciprocal of the maximum sensitivity function value of the human

PCS in the frequency domain. The sensitivity function was defined in

Chapter 2. 1/MaxSens quantitatively defines the postural adjustment of

perturbed stance. This metric is more systematic and objective than

previous descriptive methods (Chapter 2). Invariant Density Analysis

(IDA) from Chapter 3 has a series of metrics that quantify the human

postural sway during quiet stance. IDA assumes that the human PCS is a

time-evolutionary dynamical system and introduces a reduced-order model

of the human PCS using the Markov chain concept. Unlike 1/MaxSens,

IDA quantifies postural responses during quiet stance. However, we may

consider that both metrics are based on the same PCS since both metrics

assume ankle strategy to maintain balance. Therefore, even though they

explain postural responses to different types of perturbations, we may

expect correlation between the two tools. In this chapter, we will

investigate how the two tools are related to each other. 

Additionally in this chapter, we examine how the Entropy metric

derived in the IDA method compares to other measures of entropy used in

human movement analysis. In the literature, approximate entropy (Pincus

& Goldberger, 1994) and sample entropy (Richman & Moorman, 2000)

have widely been used to measure the complexities of biological systems.
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Since IDA contains the Shannon entropy (Shannon, 1948) measure, it

would be useful to see how Shannon entropy correlates with approximate

entropy or sample entropy. Therefore, we will also investigate the

correlation between Shannon entropy and approximate entropy or sample

entropy.  

4.2 CORRELATION BETWEEN 1/MAXSENS AND IDA

As mentioned in the introduction section, 1/MaxSens and IDA are based on

different types of postural stance, perturbed and quiet, respectively. 

Therefore, direct integration of these tools may not be tractable. However, 

we may compare 1/MaxSens during perturbed stance and IDA metrics

during quiet stance from the same subject. With the assumption that both

tools measure the human PCS while using an ankle strategy, we performed

a correlation analysis (SPSS Ins., Chicago, IL; v15) using the same dataset

from Chapter 2, which were derived from 10 quiet stance and 10 perturbed

stance trials. 1/MaxSens was computed from perturbed stance data. IDA

metrics were only computed in the AP direction from quiet stance data

since 1/MaxSens was defined only in this direction.

Table 4.1 Correlation between 1/MaxSens and IDA metrics in AP direction

Ppeak MeanDist D95 EV2 Entropy

1/MaxSens
r .52 -.61 -.54 -.46 -.57

p-value .01 .002 .008 .03 .005

1/MaxSens was found to be significantly correlated with all five IDA

metrics in the AP direction (Table 4.1). This correlation may be due to the
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possibility that both tools measure the same PCS which uses ankle strategy.

However, based on the correlation coefficients which are not strong even

though they are from the same PCS (-0.46 r 0.52), we may conjecture

that both tools somehow provide different information. The main

difference is the amount and duration of perturbation applied to the PCS:

the first perturbation for 1/MaxSens is relatively large and impulsive; the

second one for IDA is a small but persistent white noise-type perturbation. 

Postural response to a large and impulsive perturbation could possibly

require larger sway angle around the ankle joint, which can produce

nonlinear properties of the ankle dorsiflexor and plantarflexor moment

arms. Nonlinear properties can be detected by the coherence function

which is defined as follows (Bendat & Piersol, 2000), 

2

F
F

FF

G
C

G G
(4.1)

      

where FG is the cross-spectral density between lean angle and

impulsive force F, and G and FFG are the autospectral densities of

and F, respectively. The coherence function describes the relationship

between two signals. The value of the coherence function always satisfies

0 1FC . When there is a single input and the system is linear, FC is

one. If FC is less than one but greater than zero, then the system may

have three possibilities: (1) the measurement is contaminated by noise, (2)

there are multiple inputs that contribute to the output, and (3) the system is

not linear (Bendat & Piersol, 2000). The value of the coherence function of

the perturbed dataset is about 0.4 for most of the frequency components. 

Indeed, the human PCS has internal noise, which can also be thought of as
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another input. However, we still have the possibility that this small value

of coherence is due to nonlinearity of the human PCS when the sway angle

is large. In other words, even though both metrics assess the same PCS,

1/MaxSens covers wider range of postural sway. 

4.3 CORRELATION BETWEEN ENTROPY FROM IDA AND APEN

AND SPEN

In the literature, approximate entropy (ApEn) and sample entropy (SpEn)

have been frequently used to study heart rate variability (Al-Angari &

Sahakian, 2007), electroencephalography (EEG) (Bruhn, Bouillon, Hoeft, 

& Shafer, 2002), postural sway analysis (Ramdani, Seigle, Lagarde, 

Bouchara, & Bernard, 2009; Vaillancourt & Newell, 2000), etc. ApEn is a

measure of system complexity closely related to entropy, which is easily

applied to clinical cardiovascular and other time series. ApEn quantifies

the unpredictability of fluctuations in a time series. For example, repetitive

patterns of fluctuation in a time series are more predictable than a time

series without repetitive patterns. Therefore, time series with more

complexities and less predictabilities have a higher ApEn. Both ApEn and

SpEn are practical estimators of Kolmogorov-Sinai entropy, which

measures the rate of information change from the system (Pincus, 1991;

Richman & Moorman, 2000). SpEn is computationally more robust and

accurate compared to ApEn (Richman & Moorman, 2000). In this section, 

we will investigate the relationship between Entropy from IDA and SpEn

but not ApEn due to the outperformance of SpEn over ApEn. The algorithm

to compute SpEn is not explained in this section since it is well explained

the literature (e.g., Richman & Moorman, 2000). Using the dataset from

Chapter 3, both Entropy and SpEn were computed from quiet stance data.
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For the purpose of simple comparison, both entropies were computed only

in the AP direction. Correlation between Entropy and SpEn was

investigated (SPSS Ins., Chicago, IL; v15), where the input parameters for

SpEn were set as m=2 and r=0.2 (Ramdani et al., 2009).

Entropy was found to be significantly correlated with SpEn (Table

4.2). Again the correlation coefficient was not strong (r = 0.40). This is

possibly due to the fact that Entropy used in IDA is the entropy for the

stationary distribution (or long-term behavior) whereas SpEn is a measure

of rate of entropy change of the current system. Therefore, investigation of

both Entropy and SpEn (or ApEn) might be useful for thorough analysis of

the PCS. 

Table 4.2 Correlation between Shannon Entropy and SpEn in AP direction

SpEn

Entropy

R .40

p-value .005

4.4 CONCLUSION

In this chapter, we have investigated how 1/MaxSens and IDA in the AP

direction are correlated. We found that both tools are significantly

correlated. Relatively low correlation (-0.46 r 0.52) may be due to the

fact that 1/MaxSens covers wider range of postural sway.  

Entropy from IDA was found to also be significantly correlated with

SpEn. However, it should be noted that Entropy describes uncertainty of
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long-term behavior of the human PCS whereas SpEn illustrates rate of

change of uncertainty or complexity of the current PCS. Therefore,

investigation of both Entropy and SpEn (or ApEn) might be useful for

thorough analysis of the PCS. 
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Part II APPLICATION OF TOOLS
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5 EFFECTS OF MULTIPLE LOAD CARRIAGE AND VISUAL
CONDITIONS ON POSTURAL SWAY OF FIREFIGHTERS

5.1 ABSTRACT

The purpose of this study was to investigate the effects of multiple load

carriage and visual conditions on postural sway of firefighters. Twenty-

four male career and volunteer firefighters (age 26±5 years, height 177±8

cm, weight 89±19 kg, and experience 5.6±4.3 years) were tested. Load

carriage was varied using four 30-minute self-contained breathing

apparatus (SCBA) air bottle configurations that varied in size and mass. 

Postural sway was assessed using a force platform under two visual

conditions (eyes open and eyes closed) and two stance conditions (quiet

unperturbed stance and stance after a mild backward tug at the waist). For

each visual condition, three unperturbed 60s trials and seven perturbed

trials were tested in randomized order. For the unperturbed trials, quiet-

stance center of pressure measures were computed using various

assessment techniques: traditional summary descriptive sway measures, 

stabilogram diffusion analysis parameters, and invariant density analysis

parameters. For the perturbed trials, the robustness of the postural control

system was assessed using a new method that examined the sensitivity to

the perturbation. Results found that medial-lateral postural sway

significantly increased when using heavier air bottles ( p<0.05). A trend

towards increasing postural sway in the anterior-posterior direction was

noted with increased bottle mass; however, the effect may be attenuated by

the parti

perturbation. Reduction in visual input significantly increased postural

sway in any direction ( p<0.05). Robustness to perturbation was not
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affected by bottle configuration nor vision. An important implication of

this study is that members of the fire service need to be aware of how

SCBA air bottle choice may affect firefighter balance, especially when in

visually challenging environments. 

Keywords: self-contained breathing apparatus; balance; invariant density

analysis; robustness

5.2 INTRODUCTION

In the firefighting population, falls and loss of balance on the fireground

lead to over 11,000 injuries per year or more than 25% of all fireground

injuries (Karter 2003; Karter and Molis 2008). Firefighter stability and

balance has been shown to be influenced by their personal protective

equipment (PPE) (Punakallio, Lusa, & Luukkonen, 2003; Sobeih, Davis, 

Succop, Jetter, & Bhattacharya, 2006) which includes coat, pants, boots, 

hood, gloves, helmet, and a self-contained breathing apparatus (SCBA).

Wearing firefighting PPE with SCBA has been found to significantly

impair postural balance (Punakallio et al., 2003).

Previously we investigated the effects of different SCBA air bottle

configurations (bottle mass and size) on gait performance of firefighters by

examining kinetic and kinematic gait parameters, while walking over

obstacles and at two different walking speeds (Park, Hur, Rosengren, Horn, 

& Hsiao-Wecksler, 2010). We found that the mass of the air bottle, but not

the size, significantly affected gait behavior.  Specifically, heavier SCBA

air bottles reduced gait performance (e.g., increased anterior-posterior and

vertical ground reaction forces). As a continuation of that study, we
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investigated the effect of SCBA air bottle configuration on the standing

balance of firefighters. 

Several studies have investigated the effect of load-carriage on the

postural stability of military personnel, adults and children. It has been

reported that load-carriage caused changes in parameters such as increased

excursion of the center of pressure (COP) and larger ground reaction

forces indicating that adding a load on the back deteriorates postural

stability (Birrell, Hooper, & Haslam, 2007; Schiffman, Bensel, Hasselquist, 

Gregorczyk, & Piscitelle, 2006). Increased backpack load carriage on the

back of school children was also found to increase forward trunk lean

angle to compensate for the induced postural instability (Singh & Koh, 

2009). The location of the backpack center of mass (COM) also affects

posture. Knapik et al. (1996) reported that placing the backpack COM

close to the body COM minimized energy cost. 

In addition to the gear carried by firefighters, postural stability may be 

hampered by poor vision. The vision of a firefighter may be compromised

by wearing the SCBA facepiece, fogging of the facepiece caused by

transitioning between different temperature and moisture conditions, or by

smoke inside or outside of a burning structure. Generally, postural

steadiness of middle-aged healthy adults decreases under reduced vision

(Cornilleau-Peres et al., 2005) and the postural sway of firefighters with

eyes closed has been shown to increase compared to normal vision

(Punakallio et al., 2003).  

At present the effects of mass and size of SCBA air bottle and their

interactions with visual input on postural sway and robustness of

firefighters to mild balance perturbations has not been investigated. The

aim of the present study was to examine how mass and size of SCBA air
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bottle affect postural sway and robustness of firefighters and how these

parameters interact with visual condition. 

5.3 METHODS

5.3.1 Participants

Twenty-four young male firefighters (age 26±5 years, height 177±8 cm, 

weight 89±19 kg, and experience 5.6±4.3 years) were recruited from

Illinois Fire Service Institute (IFSI) training events and local fire

departments (Park et al., 2010). Twenty-two firefighters classified

themselves as volunteer, and two as career firefighters. None of the

subjects reported neurological, postural disorders or vision problems.

Informed consent was given by all subjects and the study was approved by

the University of Illinois Institutional Review Board. Two of the 24

subjects (both volunteers) were excluded in the analysis due to technical

problems. 

5.3.2 Air Bottle Configurations

- (Park et al., 2010). This is

the volume of air (1.25 m3) at a given pressure that provides an average

firefighter with approximately 30 minutes of usable air (Figure 5.1). The

configurations consisted of an aluminum bottle (AL), a carbon fiber bottle

(CF), a fiberglass bottle (FG), and a specially redesigned bottle (RD). The

aluminum bottle (DOT# E6498-2216, Scott) is commercially-available and

considered to represent relatively low-cost, low pressure (2250 psi), heavy

(9.6 kg) and large bottles. The carbon fiber bottle (DOT# E10915-4500, 

Luxfer) is also commercially-available and represented relatively

expensive, high pressure (4500 psi), light (4.7 kg) and small bottles. The
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fiberglass bottle (DOT# 8059-4500, ISI) was similar in size to the CF

bottle, but was modified to have the same mass as the AL bottle, in order to

examine the effect of mass. To examine the effect of lowering the center of

RD bottle was

constructed from A high pressure 60-minute (2.49 m3) carbon fiber bottle

(DOT# E10915-4501, Luxfer) was cut to construct the RD bottle so that

the RD bottle has same air volume and mass of CF bottle. As a result, RD

bottle has lower center of mass (COM) location relative to the CF bottle on

the Cutting 60-minute CF

bottle for RD bottle resulted in a deviation of COM location of RD bottle

by 2.6 cm backward from COM location of CF bottle. We chose this

redesign since 60-minute diameter mandrel could directly be used to create

shorter bottles. For safety reasons, we used unpressurized bottles in this

study. To compensate for the mass of air in a fully-charged bottle, we

attached steel rods weighing 1.7 kg into the center of all four bottles.  

5.3.3 Experimental Procedure

Each participant wore his bunker coat, pants, and boots assigned and fitted

by his home department. Helmet (Lite Force Plus, Morning Pride) and

SCBA pack (50i SCBA, Scott) were provided (Figure 5.2). The SCBA face

piece, regulator, and low pressure line were not used during the experiment. 

Participants wore their PPE with each of four SCBA bottles in randomized

order. 

Participants were asked to stand quietly on a force platform (AMTI,

model BP600900; Watertown, MA) in a self-selected, comfortable stance

with arms crossed at the chest while looking at a picture placed at eye level
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Figure 5.1 SCBA air bottle masses and dimensions (cm) for Aluminum (AL), Fiber
glass (FG), Carbon fiber (CF) and Redesigned (RD) bottles

3 m in front of the subject (Figure 5.2). The location of each participant s

boots was marked to ensure the same foot positioning for all trials. In order

to avoid inconsistencies in the data at transitions, data collection began 2

seconds after the participant was informed that the trial started. All force

platform data were sampled at 1000 Hz. Force platform data were used to

compute COP measures in both anterior-posterior (AP) and medial-lateral

(ML) directions. 

Participants were instructed to either open or close their eyes during

the data collection. For each visual condition, two different perturbation

conditions (unperturbed and perturbed stances) were applied to subjects. 

The total number of trials per visual condition were 10 consisting of 3

unperturbed and 7 perturbed trials. Both unperturbed and perturbed

standing trials were combined and presented in randomized order. 
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However, the order of visual condition was not randomized. For the

unperturbed stance, participants stood quietly on a force platform for 60 s. 

For perturbed stance, a mild impulsive backward tug was applied to the

SCBA pack. Timing of the perturbation was randomized between 10-50 s

after the start of a trial so that the subject was not given cues about if and

when the tug would occur during a trial. Data collection was stopped 10 s

after a tug. The tug was delivered by a custom tug device via a loose tether

to the pack such that the normal postural sway was unhindered before and

after the tug (Figure 5.2). The impulse perturbation was generated by a

pneumatic cylinder which was controlled by an electronic timer. After the

brief tug, the mechanism allowed the tether to quickly slacken, allowing  

Figure 5.2 Experimental setup. The subject stood on a force platform, which recorded
the center of pressure. A load cell recorded the impulse force that was transmitted
through a tether attached to the SCBA pack. The perturbation was created by activating
a pneumatic cylinder and seatbelt carriage. When the cylinder is activated, it pushes the
seatbelt carriage, which locks due to rapid acceleration, causing a brief tug on the tether
(i.e., extended seatbelt webbing)
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the subject to adjust to an upright posture. The perturbation magnitude was

set to elicit only a sway response about the ankles. Tug force was measured

from a load cell (PCB Piezotronics, model 208C02; Depew, NY).

5.3.4 Data Analysis

Three postural sway assessment techniques were used to analyze the

unperturbed stance trials: traditional summary descriptive measures (Prieto, 

Myklebust et al. 1996) which provide statistical descriptions of the COP;

stabilogram diffusion analysis (SDA) (J J Collins & De Luca, 1993) which

describes the diffusion behavior of the COP with respect to time; and

invariant density analysis (IDA) (Chapter 3) which models the reduced-

order dynamics of the human postural control system. Measures in the

anterior-posterior (AP) and medial-lateral (ML) directions were examined.

The traditional measures (Prieto et al., 1996) included maximum distance

(MaxDist), standard deviation (SD), and range (Range) of the COP. The

SDA measures (J J Collins & De Luca, 1993) included short-term

diffusion coefficients (DS), long-term diffusion coefficients (DL), short-

term scaling exponent (HS), and long-term scaling exponent (HL). IDA

measures (Chapter 3) included peak probability (Ppeak) which describes

the probability that COP will visit a certain state, average distance from

centroid (MeanDist) of COP, distance from centroid at which there is a

95% probability of containing the COP (D95), 2nd eigenvalue (EV2) of the

transition matrix that contains the probabilities by which the movement of

COP in the next step is determined, and Shannon entropy (Entropy) which

describes the randomness or uncertainty of COP movement. 

Robustness was evaluated for perturbed stance trials by the method

described in Chapter 2. This method determines the sensitivity function for
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the postural control system. The sensitivity function describes how

responsive a system is to small perturbations in the system; larger values

indicate reduced robustness or decreased relative stability of the system. 

Robustness was quantified

maximum magnitude of the sensitivity function (1/MaxSens) when

perturbed by a mild backward tug. 

5.3.5 Statistical Analysis

A two-way repeated-measures analysis of variance (ANOVA) was used to

examine whether bottle configuration (AL, FG, CF and RD) and visual

condition (eyes open and eyes closed) affected postural sway (traditional

measures, SDA, IDA) and robustness (1/MaxSens). The level of

(SPSS Inc., Chicago, IL; v15).

5.4 RESULTS

In general, the bottle mass, but not its size, was found to affect postural

sway (Table 5.1). Repeated-measures ANOVA indicated a significant

main effect for bottle configuration in only ML-directed COP measures:

SDML (F(3,17)=5.55, p=0.008), RangeML (F(3,17)=3.57, p=0.036), DLML

(F(3,17)=3.86, p=0.028), PeakML (F(3,17)=10.20, p<0.001), MeanDistML

(F(3,17)=7.05, p=0.003), D95ML (F(3,17)=5.47, p=0.008), EV2ML

(F(3,17)=3.25, p=0.048) and EntropyML (F(3,17)=18.57, p<0.001). Post-

hoc tests revealed that heavier bottles (AL and FG) significantly increased

medial-lateral postural sway and randomness (Table 5.1).

Visual condition was also found to significantly affect postural sway

(Table 5.1). Repeated-measures ANOVA indicated a significant main
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effect for visual condition in both AP and ML directions: MaxDistAP

(p<0.001), MaxDistML (p=0.006), SDAP (p=0.002), SDML (p=0.011), 

RangeAP (p<0.001), RangeML (p=0.001), DSAP (p<0.001), DSML (p=0.003),

HSAP (p<0.001), HSML (p=0.012), HLAP (p=0.024), PpeakML (p=0.046),

MeanDistML (p=0.019), D95ML (p=0.016), EntropyAP (p=0.016) and

EntropyML (p=0.001). Removal of visual information significantly

increased postural sway and randomness in both directions (Table 5.1).

An interaction effect between bottle configuration and visual

condition was found for only one measure (Table 5.1). The significant

interaction effect for D95AP (F(3,17)=4.57, p=0.016) suggests that AP

postural sway of participants who wore heavy and large bottles was

significantly amplified if visual information was not provided (Figure 5.3).

Neither bottle configuration nor visual condition was found to affect

robustness of participants (Table 5.1). Furthermore, no interaction effect on

robustness of participants was found between bottle configuration and

visual condition. 

5.5 DISCUSSION

The effects of firefighting SCBA bottle configuration (bottle mass and

size) and visual information on postural sway and robustness of firefighters

was investigated. We hypothesized that reductions in mass and size of the

SCBA bottle would reduce postural sway and enhance postural robustness

of firefighters while wearing SCBA. 

Compared with light bottles (CF, RD), heavy bottles (AL, FG)

significantly increased COP fluctuation in the ML direction. Heavy bottles

increased traditional measures of SDML and RangeML and IDA measures of

MeanDistML and D95ML by 30%, 23%, 48% and 44%, respectively. Both
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SDML and RangeML describe the amount of COP fluctuation in the ML

direction. MeanDistML and D95ML are similar to SDML and RangeML with a

difference that MeanDistML and D95ML describe how far the COP will

wander away from the centroid on average in steady state in the ML

direction. 

Schiffman et al. (2006) examined changes in COP behavior as a

function of changes in load mass and found linear relationships between

mass of the load and the extent of postural sway as measured by traditional

COP measures in all directions. Punakallio et al. (2003) reported that

wearing firefighting clothing, which weighed 26 kg or about 30% of mean

body mass of their participants, significantly increased COP excursions in

both AP and ML directions. Our results provide further support that

increased load mass significantly increases COP excursion in ML

direction. Even though we did not find any significant increase of COP

excursion in AP direction, there were tendencies that COP excursion

increased in the AP direction with heavy bottles (Table 5.1).

Wearing heavy bottles also resulted in significant increases in the

randomness of the COP excursion. The degrees of randomness of postural

sway were captured by both the Ppeak and Entropy measures from IDA.

Compared with light bottles, heavy bottles decreased PpeakML by 17%. A

large Ppeak value implies that the COP location will mostly be

concentrated around one state. In this sense, smaller PpeakML values as

noted with heavy bottles suggests that wearing heavy bottles will cause

ML postural sway to have less tendency to stay in specific states, i.e., 

greater tendency to fluctuate more in the ML direction. 
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represent two different control systems for maintaining upright quiet

stance: an open-loop control scheme over short-term intervals and a

closed-loop control scheme for longer time frames (J J Collins & De Luca, 

1993). The increased DLML due to the heavy SCBA bottles (AL, FG)

suggests that the feedback control mechanism was more challenged by the

heavier bottles such that long-term COP tended toward instability twice as

fast as when wearing the lighter bottles. This result is also supported by

EV2ML data from the IDA measures, which describes the convergence rate

of the COP distribution to the invariant density. It appears that the heavy

bottles (AL, FG) tend to challenge the feedback control mechanism such

that it takes longer for the control mechanism to keep the COP near

equilibrium, which in turn increases convergence time to the invariant

density. 

Interestingly, all postural sway parameters that were significantly

affected by bottle mass were in the ML direction (Table 5.1). A broad

literature review of risk factors of falls with force platform data from 1950

to 2005 found that mean velocity, mean displacement, and standard

deviation in the ML direction were important parameters which can

indicate future falls of elderly populations (Piirtola & Era, 2006).

Therefore, our finding that postural sway parameters in the ML direction

were affected by bottle mass has important implication that the use of

heavier bottles may put firefighters at greater risk for falls. 

Similar to the results of previous research on postural control, visual

information significantly affected the postural sway of participants. A large

number of parameters that spanned all three analysis techniques were

significantly affected by visual conditions. A deficit of visual information

resulted in increased postural sway with more randomness and uncertainty. 
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Table 5.1 Measures of postural sway and robustness. Postural sway measures include
traditional measures (TRAD), SDA and IDA measures. Robustness measure includes
1/MaxSens. Values represent mean (standard error). Superscript denotes significant
differences from indicated main effect condition (p<0.05). Interaction represents the p-
value for the interaction Bottle × Vision.

Parameter
Bottle Vision Interaction

p-valueAL (A) FG (B) CF (C) RD (D) EO (E) EC (F)

TRAD

MaxDistAP
19.61
(1.56)

19.18
(1.67)

18.44
(1.36)

17.86
(1.26)

16.88F

(1.11)
20.72E

(1.54)
0.31

MaxDistML
8.65

(1.00)
9.18

(1.37)
7.40

(0.85)
7.17

(0.73)
7.35F

(0.73)
8.86E

(1.13)
0.77

SDAP
6.38

(0.55)
6.34

(0.57)
6.01

(0.56)
5.83

(0.41)
5.68F

(0.44)
6.60E

(0.53)
0.54

SDML
2.75CD

(0.37)
2.82CD

(0.47)
2.17AB

(0.29)
2.10AB

(0.23)
2.22F

(0.26)
2.69E

(0.39)
0.51

RangeAP
34.45
(2.68)

33.67
(2.97)

31.81
(2.33)

31.00
(2.12)

29.48F

(1.98)
35.98E

(2.63)
0.51

RangeML
14.88CD

(1.74)
15.72CD

(2.34)
12.69AB

(1.48)
12.18AB

(1.20)
12.45F

(1.29)
15.28E

(1.92)
0.72

SDA

DSAP
18.45
(2.34)

17.12
(3.28)

15.75
(2.19)

16.14
(2.30)

11.83F

(1.47)
21.89E

(2.87)
0.39

DSML
4.09

(0.86)
4.76

(1.50)
3.45

(0.67)
3.19

(0.52)
3.11F

(0.60)
4.63E

(0.99)
0.41

DLAP
2.83

(0.50)
2.97

(0.57)
2.72

(0.61)
2.43

(0.42)
2.58

(0.49)
2.90

(0.44)
0.93

DLML
0.61CD

(0.16)
0.67

(0.27)
0.31A

(0.17)
0.32A

(0.08)
0.37

(0.11)
0.58

(0.20)
0.44

HSAP
0.86

(0.01)
0.85

(0.01)
0.85

(0.01)
0.85

(0.01)
0.83F

(0.01)
0.87E

(0.01)
0.86

HSML
0.80

(0.01)
0.81

(0.01)
0.80

(0.01)
0.80

(0.02)
0.79F

(0.01)
0.81E

(0.01)
0.08

HLAP
0.21

(0.02)
0.22

(0.02)
0.24

(0.02)
0.22

(0.02)
0.24F

(0.02)
0.20E

(0.01)
0.77

HLML
0.23

(0.02)
0.21

(0.02)
0.19

(0.02)
0.21

(0.02)
0.22

(0.02)
0.21

(0.02)
0.41

IDA

PpeakAP
0.03

(0.00)
0.04

(0.00)
0.04

(0.00)
0.04

(0.00)
0.04

(0.00)
0.03

(0.00)
0.20

PpeakML
0.08CD

(0.01)
0.09CD

(0.01)
0.10AB

(0.01)
0.10AB

(0.01)
0.10F

(0.01)
0.09E

(0.01)
0.45

MeanDistAP
5.46

(0.58)
6.64

(1.42)
4.93

(0.48)
4.79

(0.36)
4.76

(0.41)
6.15

(0.76)
0.56

MeanDistML
2.36CD

(0.31)
2.66CD

(0.48)
1.82AB

(0.24)
1.76AB

(0.19)
1.90F

(0.22)
2.40E

(0.35)
0.29

D95AP
13.60
(1.45)

13.11
(1.66)

12.15
(1.07)

11.82
(1.01)

12.03
(1.12)

13.31
(1.24) 0.02

D95ML
5.94CD

(0.83)
6.44CD

(1.10)
4.32AB

(0.55)
4.30AB

(0.49)
4.69F

(0.54)
5.81E

(0.84)
0.26

EV2AP
0.999

(0.000)
0.999

(0.000)
0.999

(0.000)
0.999

(0.000)
0.999

(0.000)
0.999

(0.000)
0.21

EV2ML
0.996D

(0.001)
0.996D

(0.001)
0.994

(0.001)
0.993AB

(0.001)
0.995

(0.001)
0.995

(0.001)
0.62

EntropyAP
5.92

(0.13)
5.86

(0.14)
5.81

(0.12)
5.79

(0.11)
5.76F

(0.11)
5.93E

(0.12)
0.08

EntropyML
4.63CD

(0.16)
4.62CD

(0.17)
4.26AB

(0.14)
4.26AB

(0.14)
4.32F

(0.13)
4.57E

(0.16)
0.61

Robustness 1/MaxSens
53.63
(0.47)

52.71
(0.67)

53.24
(0.78)

53.71
(0.67)

52.95
(0.57)

53.69
(0.54)

0.53
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An interesting result was that vision significantly interacted with

bottle configuration, but only in the AP direction. Figure 5.3 illustrates that

D95AP remained almost unchanged for all bottle configurations when

visual input was provided. However, D95AP significantly (p=0.016)

increased when firefighters were wearing the large and heavy SCBA bottle

(AL) and visual input was not provided. D95 describes how far the COP

diffuses from the centroid. Therefore, AP postural sway of participants

who wore heavy and large bottles were significantly increased when

participants closed their eyes, as can also be observed in other AP

measures, although interactions were not found to be statistically

significant (Figure 5.3).

Robustness was not affected by either bottle configuration or visual

condition. In order to better understand the effect of adding mass on

1/MaxSens, a simple parameter study based on a single-link inverted

pendulum model modulated only by ankle stiffness was performed. 

Increasing body mass or length with a fixed ankle stiffness reduced

1/MaxSens, i.e., decreased system robustness, whereas increasing ankle

stiffness in proportion to body mass or length did not substantially affect

1/MaxSens, i.e., no change in the robustness with added mass or length. 

Therefore, we may postulate that participants stiffened their ankles when

heavy and big bottles are added. It has been found that cats stiffen the hind

limbs against increased vertical loadings (Rushmer, Macpherson, &

Dunbar, 1987). However, it is not well known if humans stiffen their

ankles when heavy loads are applied on their backs. Some participants

anecdotally reported that they tended to lean a little bit forward in order to

compensate for the heavy loads when they wore heavy bottles (AL, FG)

during the experiment. This behavior could possibly increase ankle
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stiffness, resulting in no significant changes in postural sway even in

heavier loads. 

Future studies include the application of robustness measure in the

ML direction. Since postural sway parameters in the ML direction were

found statistically significant result, it would be useful to investigate the

robustness of firefighters in ML direction, as well.  

5.6 CONCLUSIONS

affected by both the mass of SCBA bottle and provision of visual

information. Furthermore, an interaction between SCBA bottle

configuration and vision affected postural sway in AP direction. However, 

configuration nor vision affected postural robustness to mild perturbations. 

In conclusion, wearing heavier SCBA air bottles resulted in significantly

increased postural sway of firefighters. In particular, heavy bottles more

strongly affected the feedback control mechanism of postural control

system such that long-term COP tended toward instability twice as fast as

when wearing the lighter bottles. Increased bottle mass also caused more

random and stochastic COP excursions. Interestingly, heavy bottles

significantly increased firefi

suggesting that firefighters with heavy bottles are at high risk of falls in the

ML direction. Removing visual input significantly increased postural sway

with more randomness and uncertainty. Furthermore, visual condition was

significantly interacted with bottle configuration suggesting that AP

postural sway of participants with heavy and large SCBA will be

significantly amplified if visual information is not provided. Robustness of
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firefighters was not affected by SCBA air bottle configuration and visual

condition. While the data suggested a trend towards increasing postural

sway in the AP direction due to increased SCBA bottle mass, the effect

ctation of

the backward perturbation. 

An important implication of this study is that firefighters and fire

service departments need to be aware of how SCBA bottle choice may

affect balance, especially when in visually challenging environments. 
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6 POSTURAL SWAY AND FALL-RISK IN OLDER ADULTS
USING INVARIANT DENSITY ANALYSIS

6.1 ABSTRACT

Invariant density analysis (IDA) is a recently developed approach that

utilizes postural sway data to characterize the long-term dynamical

behavior of the postural control system. In this study, we investigated

whether IDA combined with classic balance-related measures can predict

fall risk of community-dwelling elderly adults. Data were analyzed from

the MOBILIZE Boston Study cohort, which consisted of 765 community-

dwelling adults over the age of 70. Center of pressure (COP), short

physical performance battery (SPPB), Berg balance scale (Berg), and fall

history data for 444 elderly adults (285 female and 159 male; mean age

77.9±5.4 years) were used. Subjects were classified as non-recurrent

(n=304) or recurrent (n=140) fallers depending on occurrence of two or

more falls during the first year of the study. COP data collected during

baseline tests were used to compute IDA, stabilogram diffusion analysis

(SDA) and traditional summary statistical parameters of postural sway. A

subset of COP parameters (four IDA, one SDA and four traditional)

successfully differentiated the recurrent from non-recurrent faller groups.

Logistic regression models for fall risk prediction were constructed using

COP parameters, clinical balance measures, and three confounding

variables (age, gender and retrospective fall history). The model with IDA

parameter Entropy (odds ratio, 2.09; p=0.04) with confounding variable

fall history (odds ratio, 2.29; p<0.001) were found to be a significant

predictor of fall risk (sensitivity=33.9%, specificity=93.4%). Entropy

provides a measure of the randomness or uncertainty of postural sway. 
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Therefore, increasing Entropy values may be useful to predict fall risk.  

Keywords: center of pressure, balance, aging, falls, fall-risk prediction

model

6.2 INTRODUCTION

Falls are one of the most common health concerns facing elderly persons

today. About one-third of community-dwelling persons over the age of 65

and nearly one-half of institutionalized persons will fall each year (Di Pilla, 

2009; Graafmans et al., 1996; Stevens, Mack, Paulozzi, & Ballesteros,

2008). Thirty-one percent of falls result in an injury requiring medical

attention or restriction of activities for at least one day (Stevens et al., 

2008). Even among persons not experiencing a fall-related injury, falls are

associated with greater functional decline, social withdraw, anxiety and

depression, and an increased use of medical services (Jeannotte & Moore,

2007; Kiel, O'Sullivan, Teno, & Mor, 1991). 

The behavior of the postural control system, which is usually

characterized by fluctuations of the center of mass (COM) or center of

pressure (COP) during quiet stance, has been investigated to understand

risk factors for falls of older fallers. Numerous cross-sectional studies have

reported significantly greater sway in subjects with a history of falling

compared to non-fallers. For example, increased total excursion length and

mean velocity of the body COM during quiet stance have been found to be

useful predictors of risk of falling (Fernie, Gryfe, Holliday, & Llewellyn,

1982). Similarly, a number of prospective studies have reported that

postural sway is a useful predictor of the risk of falling during follow-up

periods. For example, standard deviation and elliptical swept area of the
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COP under the feet have also been found to successfully differentiate

between fallers and non-fallers (Lord & Clark, 1996; Stalenhoef, Diederiks, 

Knottnerus, Kester, & Crebolder, 2002; Thapa, Gideon, Brockman, Fought, 

& Ray, 1996). However, these results are not entirely consistent in the

literature. For instance, in other studies, COP information from quiet

standing could not differentiate between fallers and non-fallers (Buatois, 

Gueguen, Gauchard, Benetos, & Perrin, 2006; Laughton et al., 2003).   

Most prior studies that have used postural sway information to

examine fall-risk factors are based on statistical descriptions of postural

sway. For instance, traditionally, COP data have been analyzed using

parameters that describe the shape or speed of the trajectory (Buatois et al., 

2006; Laughton et al., 2003; Lord & Clark, 1996; Maki, Holliday, &

Topper, 1994; J. A. Norris, Marsh, Smith, Kohut, & Miller, 2005; Thapa et

al., 1996). However, these parameters do not provide insight into the

physiological system as a whole. Furthermore, they are not consistent at

differentiating between recurrent fallers and non-fallers (Buatois et al., 

2006; Laughton et al., 2003). A limited number of studies have used

Stabilogram Diffusion Analysis (SDA) to investigate fall risks of elderly

adults (e.g., Laughton et al., 2003; J. A. Norris et al., 2005). However,

SDA can only provide summary information about the human postural

control system; it cannot provide specific information about or recreate the

actual sway behavior (K M Newell et al., 1997). We developed Invariant

Density Analysis (IDA), which provides new insight into the long-term

dynamical behavior of COP data (Chapter 3). IDA is a stochastic analysis

tool for postural sway time-series data that generates five outcome

parameters based on a Markov-chain model. The invariant density

describes the eventual probability distribution of finding the COP at any
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given distance away from the centroid. Therefore, IDA may be more

successful than other COP analysis methods at predicting fall risk, since by

definition it predicts the long-term behavior, compared to others that may

be simply correlates of fall risk.  

The aim of this paper was to investigate the efficacy of the use of

IDA-based parameters to examine the fall risk of community-dwelling

elderly adults based on assessment of postural sway using COP data or

other clinically-based balance measures and fall history data through one

year post-assessment. First, we examined whether or not IDA, as well as

other available COP parameters, could differentiate between recurrent

fallers and non-fallers. Second, we explored the development of a fall-risk

prediction model for elderly adults using a logistic regression model based

on IDA and these other available balance parameters. 

6.3 METHODS

6.3.1 Subjects

Data for this study were a subset of the Maintenance of Balance, 

Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) Boston

Study. The MOBILIZE Boston Study (MBS) is a prospective cohort study

investigating a unique set of risk factors for falls in seniors in the Boston

area (Leveille et al., 2008). The 765 participants, women and men aged 70

years and older living in the community in Boston and nearby suburbs, 

completed in-home interview and laboratory-based assessments of their

demographic, clinical, functional, and cognitive characteristics. 

Retrospective fall history data were collected during the baseline home

interview by asking the following question: How many times have you

fallen to the ground in the past year? By falls, I mean any event where any
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part of your body above your ankle hit the floor or ground. Also, include

falls that might have occurred on stairs. data through one

year post-baseline assessment were collected by having participants return

monthly postcards on which they recorded whether or not they fell on a

given day. Participants who failed to return the postcards were contacted

by telephone to determine their fall status during the preceding month.

Recurrent fallers were defined as participants who had two or more falls

over the first year of the study.

For the study presented in this paper, the baseline dataset of 444

elderly adults (285 female and 159 male; age range 64-97 years; mean age

77.9±5.4 years; mean height 163.89±9.61 cm; mean weight 73.16±15.80

kg) was investigated. The remaining 321 out of the original 765 subjects

were not included in this study due to insufficient falls follow-up and/or

unacceptable minimum size of ring (> 0.5 mm) for IDA computation. Of

the 444 subjects in the current study, 304 were classified as non-recurrent

fallers and 140 classified as recurrent fallers (Table 6.1). The Institutional

Review Boards at Hebrew SeniorLife and the University of Illinois at

Urbana-Champaign approved this ancillary study, and each participant

provided written informed consent in the original MBS work.

6.3.2 Experimental Protocol

Each subject performed five 30 second quiet-standing trials. For all trials,

the subject was instructed to stand on a force platform (Kistler 9286AA,

Amherst, NY). Subjects were instructed to stand quietly with eyes open

throughout the entire trial. Force platform data were used to compute

anterior-posterior (AP) and medial-lateral (ML) COP. All force platform

data were sampled at 240 Hz and were low-pass filtered at 10 Hz with a 
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4th order, zero-lag Butterworth filter for the computation of traditional

summary statistical (Prieto et al., 1996) and Stabilogram Diffusion

Analysis (SDA) (J J Collins & De Luca, 1993) parameters. 

6.3.3 Invariant Density Analysis

Invariant Density Analysis is a recently developed approach that utilizes

postural sway data to characterize the long-term dynamical behavior of the

postural control system based on a Markov-chain model (Chapter 3). IDA

assumes that COP data are stochastic, and future COP movement depends

only on the

from the centroid of the COP stabilogram to the COP current position. For

this study, the state space was partitioned and discretized by concentric

circles with ring widths of 0.2 mm. The long-term movement of the COP is

determined by the invariant density, which is an eventual distribution of

the probability of finding the COP at any given distance away from the

centroid. The invariant density can be computed as the left eigenvector of

the transition matrix that describes the transition probability of the COP

from one state to another with eigenvalue of one. Since this method

develops both a probability distribution and a transition matrix for

predicting the movement of the COP, analyzing the invariant density can

provide insight to the future behavior of the COP.
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Table 6.1 Subject demographics, Mean ± S.D.

Parameter
Recurrent Fallers

N=104

Non-recurrent
Fallers
N=340

p*

Females 85 200

Age (y) 78.0±5.7 77.9±5.3 0.8

Age Range (y) 64-97 65-92 --

Height (cm) 164.2±9.3 163.7±9.8 0.6

Weight (kg) 73.38±17.02 73.06±15.23 0.8

*p-value from ANOVA examining effects of age, height, and weight on group
classification

Five parameters were defined from the discrete Markov chain model

and offer insight into the physiology of the system (Chapter 3). 

1. Ppeak: Identifies the largest probability of the invariant density. A

larger Ppeak value indicates a higher probability that the COP

will be driven to a particular state.

2. MeanDist ( )
i I

i i : Represents weighted average state (or

average location) of the COP. MeanDist is a measure of the

distance that the COP moves away from the centroid. Larger

values signify greater overall travel of the COP.

3. D95: Locates the distance to a state below which there is a 95%

probability of containing the COP. This parameter describes how

far the COP wanders from the centroid. 

4. EV2: Represents the second largest eigenvalue of the transition

matrix. This corresponds to the rate of convergence to the

invariant density. EV2 describes how quickly the COP will reach

its invariant distribution and how sensitive the process is to
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perturbation (Funderlic and Meyer Jr 1986). A smaller EV2

indicates a lower sensitivity. 

5. Entropy ( 2( ) log ( )
i I

i i ): Estimates Shannon entropy. This

describes the randomness of the system; low entropy corresponds

to a more deterministic system and high entropy refers to a more

stochastic system, where ( )i is i-th element of the invariant

density ( ) and is summation, and I is the state space.

6.3.4 Data Analysis and Statistics

Several parameters were investigated. From the IDA procedure, five

parameters were analyzed: Ppeak, MeanDist, D95, EV2 and Entropy. From

traditional summary statistical COP parameters (Prieto et al., 1996), 19

parameters were analyzed: maximum displacement (MaxDisp), standard

deviation (StDev), range (Range), sway path length (PathLen), mean sway

velocity (MeanVel), total power (TotalPower), 95% power frequency

(95%Freq), median power frequency (MedianFreq) in both AP and ML

directions; and 95% confidence circular area (Area95%Circle), angular

deviation from the AP axis (AngDev), and total sway area (TotalSway) in

the radial direction. From the SDA procedure (J J Collins & De Luca,

1993), 12 parameters were analyzed: short-term and long-term diffusion

coefficients (ShortDiff, LongDiff), short-term and long-term scaling

exponents (ShortScale, LongScale), coordinates (CritPointX, CritPointY)

of critical point in both AP and ML directions. Additionally, clinically

available balance parameters of Berg Balance Scale (BBS) (Thorbahn, 

Newton et al. 1996) and Short Physical Performance Battery (SPPB)

(Vasunilashorn et al., 2009) were included in the analysis as well. All of
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these parameters were first investigated to see if there were significant

group differences between recurrent and non-recurrent fallers based on

postural sway and clinical balance parameters. For this purpose, an

independent t-test was used with

(SPSS Inc., v15). To understand how IDA parameters were correlated with

other balance parameters previously mentioned, correlation analysis was

performed using Pearson correlation (SPSS Inc., v15).

To construct a model for fall-risk prediction of elderly adults, we used

a logistic regression model, since logistic regression can handle both

categorical and continuous variables and the predictors do not have to be

normally distributed, linearly related, or of equal variance within each

group (Tabachnick, Fidell, & Osterlind, 2001). Since several variables

were investigated for fall-risk prediction of elderly adults based on IDA

and other available parameters, the number of available factors needed to

be small enough so that the power to find a statistically significant result

would not be sacrificed (Leech, Barrett, & Morgan, 2005). We may reduce

the number of factors by excluding factors that may cause multicollinearity

(Field, 2009; Leech et al., 2005). Therefore only the statistically significant

parameters from the t-test analyses were used in the logistic regression

(Table 6.4). The logistic regression model was assembled from variables

that were closely related to principal components (Entropy,

TotalPower_AP, SPPB, and EV2) whose eigenvalues were greater than

one (PCA, SPSS Inc., v15). Both unrotated (or raw) and rotated

component matrices were considered for better alignment of variables to

principal components. Additionally, we added confounding variables (age, 

gender, and retrospective fall history) to the logistic regression model, 

since they might affect both dependent and independent variables. 
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6.4 RESULTS

Significant differences of postural sway between groups of recurrent fallers

and non-recurrent fallers were found based on t-test results (Table 6.2). On

average, compared to non-recurrent fallers, recurrent fallers had

significantly smaller Ppeak (p=0.007) and greater MeanDist (p=0.005), 

D95 (p=0.002), EV2 (p=0.046), Entropy (p=0.001), Stdev_AP (p=0.046),

Range_AP (p=0.033), TotalPower_AP (p=0.019), Area95%Circle

(p=0.041) and CritPointY_AP (p=0.024).

Correlation analysis found that IDA parameters were correlated to

other balance parameters (Table 6.3). For example, Entropy was correlated

with MaxDisp_AP (r=0.67), StDev_AP (r=0.77), Range_AP (r=0.71),

TotalPower_AP (r=0.69) and Area95%Circle (r=0.64).

Variables in Table 6.2 were entered into a PCA to reduce the number of

variables for the fall-prediction model. Using the 12 variables presented in

Table 6.2, three principal components (PC) whose eigenvalues were

greater than one was identified. These first three PCs accounted for 86.3%

of the total variance of the 12-dimension dataset. Table 6.4 lists the PC

coefficients (i.e., eigenvalues of the correlation matrix) and correlation

coefficients between parameters and the corresponding PCs for both

unrotated and rotated component matrices. Based on PCA, we chose four

variables as possible factors for the fall risk prediction model: Entropy,

TotalPower_AP, EV2 and SPPB, which represent three PCs (Table 6.4, see

Discussion). 

These four balance parameters (Entropy, TotalPower_AP, EV2 and

SPPB) were then entered into the logistic regression model together with

the three confounding variables (age, gender and retrospective fall history)
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Table 6.2 Center of pressure measures derived from Invariant Density Analysis (IDA),
traditional summary methods (TRAD), Stabilogram Diffusion Analysis (SDA), and
clinical balance (CLINIC) measures, mean ± SE, for non-recurrent fallers (NF) and
recurrent fallers (RF).

NF
N=304

RF
N=140

p*

IDA

Ppeak 0.047±0.001 0.044±0.001 0.007

MeanDist (mm) 3.53±0.06 3.98±0.14 0.005

D95 (mm) 8.44±0.15 9.57±0.33 0.002

EV2 0.9992±0.0000 0.9993±0.0000 0.072

Entropy 5.33±0.03 5.48±0.04 0.001

TRAD#

Stdev_AP (mm) 4.57±0.08 4.86±0.12 0.046

Range_AP (mm) 23.20±0.38 24.68±0.61 0.033

TotalPower_AP 130.9±4.8 153.7±9.6 0.019

Area95%Circle (mm2) 312.3±11.4 357.4±20.9 0.041

SDA# CritPointY_AP (mm2) 20.19±0.92 26.32±2.54 0.024

CLINIC
Berg 51.00±0.29 49.98±0.50 0.063

SPPB 9.78±0.12 9.38±0.22 0.111

* p-value from independent t-test examining differences between NF and RF
NF and RF are significantly different at the 0.05 level
NF and RF are significantly different at the 0.01 level

# Only statistically significant TRAD and SDA parameters are listed

(Table 6.5). When these predictor variables were considered together, the

multivariate model significantly predicted whether a given subject should

be a recurrent faller or not (p<0.001). Nagelkerke s pseudo r2 suggests that

about 20.4% of the total variance in whether or not subjects were recurrent

fallers was explained by these variables. The average miscalculation rate of

the model was 24.9% (sensitivity=33.9%, specificity=93.4%). One balance

parameter, Entropy, and one confounding variable, fall history, were

significant factors for recurrent fallers based on the statistical significance

level and odds ratios. Table 6.5 represents the odds ratios, which suggest

that one unit increase of Entropy of an individual s postural sway will  
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Table 6.3 Correlations between IDA parameters and other balance measures, i.e.,
traditional parameters, SDA, BBS and SPPB. 

Ppeak MeanDist D95 EV2 Entropy
Ppeak 1
MeanDist -0.74 1
D95 -0.70 0.97 1
EV2 -0.60 0.51 0.55 1
Entropy -0.92 0.86 0.85 0.66 1
MaxDisp_AP -0.61 0.73 0.71 0.43 0.67
MaxDisp_ML -0.33 0.44 0.45 0.20 0.36
StDev_AP -0.70 0.80 0.76 0.49 0.77
StDev_ML -0.35 0.45 0.45 0.21 0.39
Range_AP -0.65 0.76 0.73 0.44 0.71
Range_ML -0.35 0.45 0.46 0.21 0.39
PathLen_AP -0.40 0.39 0.40 0.00 0.40
PathLen_ML -0.35 0.40 0.42 0.13 0.39
MeanVel_AP -0.40 0.39 0.40 0.00 0.40
MeanVel_ML -0.35 0.40 0.42 0.13 0.39
TotalPower_AP -0.60 0.77 0.74 0.40 0.69
TotalPower_ML -0.32 0.45 0.44 0.18 0.38
95%Freq_AP 0.05 -0.11 -0.08 -0.33 -0.10
95%Freq_ML -0.07 0.04 0.06 -0.02 0.07
MedianFreq_AP 0.17 -0.15 -0.12 -0.34 -0.18
MedianFreq_ML -0.04 0.03 0.06 -0.05 0.04
Area95%Circle -0.55 0.72 0.69 0.38 0.64
AngDev 0.19 -0.14 -0.11 -0.16 -0.19
TotalSway -0.44 0.53 0.54 0.17 0.49
ShortDiff_AP -0.44 0.50 0.51 0.11 0.47
ShortDiff_ML -0.31 0.40 0.41 0.13 0.35
LongDiff_AP -0.39 0.34 0.32 0.29 0.42
LongDiff_ML -0.15 0.19 0.19 0.12 0.17
ShortScale_AP 0.03 -0.09 -0.05 -0.13 -0.05
ShortScale_ML -0.16 0.12 0.13 0.06 0.17
LongScale_AP -0.17 0.09 0.06 0.17 0.16
LongScale_ML 0.11 -0.13 -0.15 -0.06 -0.14
CritPointX_AP -0.02 0.10 0.08 0.14 0.06
CritPointX_ML 0.05 0.02 0.02 0.02 -0.01
CritPointY_AP -0.40 0.62 0.59 0.27 0.48
CritPointY_ML -0.29 0.43 0.43 0.17 0.34
Berg 0.11 -0.14 -0.14 0.04 -0.13
SPPB 0.08 -0.12 -0.11 0.08 -0.10

Correlation with |r|>0.5, Correlation with |r|>0.8
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Table 6.4 First 3 principal components (PC coefficients) and correlation coefficients
between parameters and the corresponding PC for both unrotated and rotated
component matrices. Only values of |r|>0.4 are shown

Unrotated Principal Component Rotated Principal Component
PC1

(7.40)
PC2

(1.85)
PC3

(1.11)
PC1

(4.74)
PC2

(3.76)
PC3

(1.85)
Stdev_AP 0.94 TotalPower_AP 0.91
TotalPower_AP 0.93 Area95%Circle 0.89
Range_AP 0.92 CritPointY_AP 0.86
MeanDist 0.91 Range_AP 0.85 0.42
D95 0.89 Stdev_AP 0.82 0.49

Area95%Circle 0.89 Entropy 0.42 0.87
Entropy 0.88 Ppeak -0.85
Ppeak -0.79 EV2 0.80

CritPointY_AP 0.75 0.42 D95 0.56 0.71
EV2 0.59 -0.43 MeanDist 0.60 0.70

SPPB 0.89 SPPB 0.94
Berg 0.87 BBS 0.94

improve the odds of estimating correctly who is a recurrent faller by 109%

or one more fall in previous year will improve the odds by 129%. Note that

EV2 was dropped since classification accuracy became worse due to EV2. 

6.5 DISCUSSION

In this study, we investigated whether newly-proposed Invariant Density

Analysis (IDA) parameters could be used to differentiate recurrent and

non-recurrent fallers in community-dwelling elderly adults. We examined

data from 444 elderly subjects that participated in the MOBILIZE Boston

Study (Leveille et al., 2008). This study examined the ability of a number

of postural sway parameters derived from three COP analysis techniques

(IDA, SDA, and summary statistics) and clinically-based balance measures
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Table 6.5 Fall risk factors (p<0.05). Regression coefficients ( ), standard error (SE),
odds ratio (OR) and significance level (p) are provided for each variable in the logistic
regression model of fall risk prediction

Factors OR 95% CI p
Entropy 0.74 2.09 1.02-4.27 0.044*
Fall History 0.83 2.29 1.78-2.95 <0.001*
TotalPower_AP -0.002 0.998 0.99-1.00 0.228
SPPB -0.066 0.936 0.83-1.04 0.246
Age -0.018 0.982 0.93-1.02 0.445
Gender -0.055 0.048 0.57-1.56 0.259

* factors that significantly contributed to predicting recurrent fallers

(Berg,SPPB) to distinguish recurrent fallers from non-recurrent fallers in

this study group. A predictive model of fall risk was also explored based on

a select group of these parameters and three confounding variables (age, 

gender and retrospective fall history). 

A number of postural sway parameters were able to detect differences

between recurrent and non-recurrent fallers of the MBS participants (Table

6.2). Four out of five IDA parameters (Ppeak, MeanDist, D95 and

Entropy) could successfully differentiate the two groups (p=0.01). The

significant IDA parameters suggest that recurrent fallers swayed

significantly farther from their centroid than non-recurrent fallers, as noted

by larger MeanDist and D95 values for recurrent fallers. Furthermore,

COP fluctuations of recurrent fallers were more random and stochastic

(larger Entropy) and tended not to stay in specific states (smaller Ppeak)

than non-recurrent fallers. Four traditional parameters (StDev_AP,

Range_AP, TotalPower_AP and Area95%Circle) and one SDA parameter

(CritPointY_AP) also successfully differentiated recurrent from non-

recurrent fallers (p=0.01). Traditional parameters also suggest that on
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average recurrent fallers swayed more widely than non-recurrent fallers,

especially in the AP direction, since Stdev_AP, Range_AP,

TotalPower_AP and Area95%Circle were significantly larger for recurrent

fallers. SDA parameter CritPointY_AP was larger for recurrent fallers, 

suggesting that for recurrent fallers the transition point from short-term

open-loop control to long-term closed loop control took longer than non-

recurrent fallers in the AP direction. 

Correlation analysis found that four of the five IDA parameters

(Entropy, Ppeak, MeanDist and D95) were strongly correlated (|r| 0.7, 

Table 6.3). The remaining parameter, EV2, although not highly correlated,

was moderately correlated with the other IDA parameters (0.5<|r|<0.7).

This is because the shape of the invariant density ( ) affects all four

parameters except EV2. For example, if has a high peak near the

centroid, Ppeak will be large and Entropy would be small since a biased

distribution has a tendency for specific states. Note that Entropy is

maximum when unbiased (Shannon, 1948). A high peak near the centroid

may also induce small values for MeanDist and D95, since a high peak

indicates that the probability distribution will be closely focused around

the centroid, therefore the COP will tend to stay near the centroid and will

be less likely to drift away.  

These four IDA parameters (Entropy, Ppeak, MeanDist and D95)

tended to be correlated (|r|>0.6) with a number of traditional and SDA

parameters (MaxDisp_AP, StDev_AP, Range_AP, TotalPower_AP and

Area95%Circle) and one SDA parameter (CritPointY_AP)  (Table 6.3).

Interestingly, these parameters were mostly in the AP direction and all

except MaxDisp_AP were parameters that also differentiated recurrent

fallers from non-recurrent fallers (Table 6.2).
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When examining the unrotated PCA, 86.3% of the variance for all

balance-related parameters in Table 6.2 was accounted for by 3 principal

components (PC). By investigating unrotated PCs, we may find

meaningful interpretation of each PC (Table 6.4). PC1 describes postural

sway, i.e., the amount of fluctuation or randomness of the COP. In

particular, PC1 was highly correlated (|r|>0.8) with all traditional

parameters and all IDA parameters except Ppeak and EV2. Thus, on this

basis, any of those seven parameters could be chosen as a representative

parameter for PC1. PC2, which consists of clinical balance parameters Berg

and SPPB, describes functional balance necessary for daily living since

these parameters assess tasks such as sit to stand, arm reaching, bending at

the waist, etc. PC3 describes aspects related to the dynamics or control

mechanism of the postural control system, since EV2 characterizes the

evolution of the COP distribution: small EV2 indicates faster convergence

to an invariant density. CritPointY_AP, as explained before, characterizes

the transition time between short-term open-loop and long-term closed-

loop control. Note that EV2 and CritPointY_AP are used to represent PC3

even though they are more highly correlated to PC1. This is because they

are relatively less correlated to PC1 compared to other more highly

correlated parameters and are the only parameters with |r|>0.4 that are

relatively highly correlated to PC3. 

Rotated PCs also provide meaningful interpretation of balance-related

parameters in a somewhat different direction: each PC represents different

analysis tools of balance. PC1 represents traditional and SDA parameters. 

PC2 represents IDA parameters. PC3 represents clinical balance

parameters. These results suggest that IDA parameters explain the variance

of balance parameters in different directions (or dimensions) than
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traditional and SDA parameters. Functional balance parameters (Berg and

SPPB) also account for different aspects of balance parameters from

postural sway parameters.  

From both unrotated and rotated PCs, we chose four representative

parameters for the logistic regression: 1) TotalPower_AP representing PC1

for both unrotated and rotated systems, 2) SPPB representing PC2 for

unrotated and PC3 for rotated systems, 3) EV2 representing PC3 for

unrotated, and 4) Entropy representing PC2 for rotated systems. These

variables significantly predicted (recurrent faller

or not, p<0.001, Table 6.2). Nagelkerke s pseudo r2 suggests that the

model explained 20.4% of the total variance. Lord et al. (1993) reported

that 20.8% of falls in Australian elderly women were caused by poor

balance. To explain the remaining 79.6% of the total variance, other

potential predictors need to be investigated, which may include responses

to slip and trip (Lord et al., 1993), chronic pain level (Leveille et al., 2009),

type of medications (Cumming et al., 1991), depression (Nevitt, 

Cummings, Kidd, & Black, 1989), fear of falling (Murphy, Dubin, & Gill, 

2003), etc.   

Among postural sway parameters, only Entropy was found to be a

significant risk factor in the logistic regression model of fall risk prediction

for elderly adults (Table 6.5). Even though other factors also successfully

found group differences between recurrent fallers and non-recurrent fallers

(Table 6.2), they were not good predictors in the fall risk prediction model, 

except for Entropy. Therefore, it might be suggested to use Entropy among

postural sway parameters to predict fall risk. 

In conclusion, fall risk factors of community-dwelling elderly adults

were investigated using IDA and other available balance parameters that
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were based on postural sway COP and clinical balance parameter data.

Most IDA parameters and some traditional COP parameters successfully

differentiated non-recurrent fallers from recurrent fallers. Retrospective

fall history (odds ratio, 2.29) and Entropy (odds ratio, 2.09) were found to

be significant contributors in a logistic regression model of fall risk

prediction (sensitivity=33.9%, specificity=93.4%). Therefore, among

balance parameters, it is suggested to use the IDA parameter of Entropy to

predict fall risk. 

6.6 ACKNOWLEDGMENTS

I thank Professors Hyun Gu Kang, Lewis Lipsitz, and Elizabeth Hsiao-

Wecksler for their co-authorships. This work is an ancillary study of the

MOBILIZE Boston study (Hebrew SeniorLife /Harvard Research Nursing

Home Project and National Institute on Aging: Research Nursing Home

Program Project #P01AG004390). Funding for Pilwon Hur was provided

by the Campus Research Board at the University of Illinois. 



93

7 CONCLUSION AND FUTURE DIRECTIONS

This book addressed the quantification of the human postural control

system (PCS), and examined PCS response to internal and external

perturbations. In chapter 2, a new measure for the PCS robustness

(1/MaxSens) was developed. 1/MaxSens, the inverse of the sensitivity of a

model of the PCS, successfully quantified the reduced robustness to mild,

external, impulsive perturbations that result from age-related degradation

of the PCS. Based on 1/MaxSens, we found that older adults were much

less robust to external perturbation. 1/MaxSens is an important contribution

because it provides a systematic and objective approach to measure

robustness to external perturbation, whereas other methods tend to

characterize the perturbed response in descriptive ways.  

In chapter 3, a new technique (called Invariant Density Analysis, or

IDA) for quantifying the human PCS using a dynamical systems approach

was developed and evaluated. IDA is a stochastic analysis tool used to

model the random oscillatory properties of the PCS. The invariant density

that describes the long-term stationary behavior of the COP data was

computed from a Markov chain model and was applied to postural sway

data during quiet stance. IDA successfully assessed age-related

degradation of the human PCS. We found that older adults had much wider

postural sways than young adults. Furthermore, the patterns of COP

movement for older adults were more unpredictable and random when

compared to young adults. The contribution of IDA is that IDA

successfully modeled the human PCS in the perspective of temporally

evolving dynamical systems, which, in turn, may leave room for

researchers to further investigate the human PCS. 
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While these two tools (1/MaxSens and IDA) are new to the clinical

community, they will provide useful insights into understanding the human

PCS, which other traditional methods cannot. Furthermore, the only device

required for the measurement is a force platform.

In chapter 4, we investigated how 1/MaxSens and IDA in the AP

direction are correlated. We found that both tools are significantly

correlated but are not identical. This slight deviation could be due to

nonlinear properties of the human PCS or different aspects of the system

that each tool is looking at, i.e., quiet stance vs. perturbed stance. We also

compared entropy (or Shannon entropy) from IDA and sample entropy

(SpEn) which has been gradually accepted in clinical communities. We

found that entropy from IDA is also significantly correlated with SpEn.

However, it should be noted that entropy describes uncertainty of long-

term behavior of the human PCS whereas SpEn illustrates rate of change of

uncertainty or complexity of the current PCS.

In chapter 5 and 6, 1/MaxSens and IDA were applied to occupational

and clinical environments. In chapter 5, a firefighters population was

investigated because they are at high risk for loses in balance and slips, 

trips and falls. Both 1/MaxSens and IDA were applied to investigate the

effects of air bottle configuration and vision on the PCS of firefighters. We

found that loss of vision and air bottle mass, but not size air bottle, 

significantly impaired the PCS of firefighters. Interestingly, postural sway

was significantly affected by air bottle mass only in the ML direction. This

is possibly because firefighters may have stiffened their ankles in the AP

direction by leaning forward when they wore heavy air bottles, which was

observed by experimenters. The findings in this study are important as it

may motivate fire departments to provide lighter air bottles and devices for
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visions enhancement for firefighters. 

In chapter 6, IDA was applied to data collected on 444 community-

dwelling elderly adults from the MOBILIZE Boston Study to investigate

fall risk factors. Four out of five IDA parameters and five out of 33

traditional, SDA, and clinical balance parameters were able to distinguish

the two groups. We found that recurrent fallers had much wider postural

sways than non-recurrent fallers. Furthermore, the pattern of COP

movement for recurrent fallers were much more unpredictable and random

compared to non-recurrent fallers. From the development of the fall risk

prediction model, we found that retrospective fall history and entropy IDA

parameter were found to be significant risk factors for falls. 

The goal of this book was to provide clinical tools to identify and aid

in the intervention or rehabilitation for those who are at high risk of falling. 

While we have developed sensitive tools that can quantify the human

postural control system, the works presented here have limitations. The

protocols in this book cannot provide ways to pinpoint which part of

sensory, musculoskeletal or central nervous system of subject has any

problems. However, if longitudinal data are available (possibly from

nursing homes for older populations), those proposed metrics can detect

abnormalities of the PCS and further intervention can start from there.

Entropy from IDA could be a good parameter in detecting abrupt changes, 

since entropy measures the uncertainty in the information contained in the

system. Currently, the robustness metric in chapter 2 is defined only in the

AP direction. Future development of the robustness metric for the human

PCS should incorporate tests that assess the robustness in the ML direction. 

Recent experimental studies reported that postural sway behavior in the

ML direction may be a better indicator of fall risk than AP direction. In
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order to use the same technique developed in Chapter 2, COM position

information in the ML direction need to be available. The gravity Line

Projection (GLP) algorithm, which was used to estimate COM position in

the AP direction using force platform data, may not be available in the ML

direction. Therefore, a literature survey and possibly development of

appropriate algorithms to estimate COM position in the ML direction using

force platform data are necessary.

Currently, IDA partitions the state space of the COP with concentric

circles. However, this could be improved by introducing different partition

shapes. For example, concentric ellipses instead of circles could be used to

partition the state space since COP data fluctuate farther in the AP than ML

direction. The lengths of major and minor axes could be determined from

the standard deviations of COP data in both AP and ML directions. 

Finally, the effect of foot placement on the IDA parameters should be

investigated. It has been known that postural sway parameters may be

affected by foot placement such as foot width, base of support area, and

foot opening angle. Correlations or linear regression analysis between IDA

parameters and foot placement (foot width, base of support area and foot

opening angle) could be conducted. Appropriate normalization procedures

may be introduced to compute more robust and reliable IDA parameters. 

In summary, the results of this research suggest that the proposed

robustness metric (1/MaxSens) and a new technique for quantifying the

dynamical systems aspect of the PCS (IDA) can be used to assess the

human PCS in occupational and clinical environments. 
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