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Measuring Robustness of the Postural Control
System to a Mild Impulsive Perturbation
Pilwon Hur, Brett A. Duiser, Srinivasa M. Salapaka, and Elizabeth T. Hsiao-Wecksler

Abstract—We propose a new metric to assess robustness of the
human postural control system to an impulsive perturbation (in
this case, a mild backward impulse force at the pelvis). By applying
concepts from robust control theory, we use the inverse of the
maximum value of the system’s sensitivity function (1/MaxSens)
as a measure for robustness of the human postural control system,
e.g., a highly sensitive system has low robustness to perturba-
tion. The sensitivity function, which in this case is the frequency
response function, is obtained directly using spectral analysis of
experimental measurements, without need to develop a model of
the postural control system. Common measures of robustness,
gain and phase margins, however require a model to assess system
robustness. To examine the efficacy of this approach, we tested
thirty healthy subjects across three age groups: young (YA: 20–30
years), middle-aged (MA: 42–53 years), and older adults (OA:
71–79 years). The OA group was found to have reduced postural
stability during quiet stance as detected by center of pressure
measures of postural sway. The proposed robustness measure
of 1/MaxSens was also found to be significantly smaller for OA
than YA or MA � � � ����, implying reduced robustness
among the older subjects in response to the perturbation. Gain
and phase margins failed to detect any age-related differences.
In summary, the proposed robustness characterization method
is easy to implement, does not require a model for the postural
control system, and was better able to detect differences in system
robustness than model-based robustness metrics.

Index Terms—Postural control, robustness, sensitivity, stability.

I. INTRODUCTION

T HE word “stability” which is defined as the ability of a
system to maintain equilibrium has been frequently used

to characterize human postural behavior. For example, aging
and visual input have been reported to modify postural stability
(e.g., [1]–[5]). Along with stability, robustness is frequently
used to describe a controlled system, but not necessarily the
human postural control system. Robustness is the quality of
being able to withstand a perturbation in order to satisfy the
performance specification [6]. Besides providing simple yes/no
information about whether a closed-loop system is stable,
robustness also provides a clear indication of how close the
system is to instability [7]. Therefore, robustness measures
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give more information on the human postural control system
performance than stability criterion alone.

This study falls within the scope of “robustness analysis” in
control systems theory, where metrics have been developed to
measure and quantify sensitivity of a dynamic system to mod-
eling uncertainties such as external disturbances. These met-
rics enable quantification and comparison of the relative sta-
bility of different systems [8]. Recently, Masani et al. [9] out-
lined the robust space for a model of the postural control system
based on a time-delayed proportional-derivative (PD) controller
by computing the gain and phase margins of the systems. This
work demonstrated validity of a PD-control-based model of the
human postural control system, but did not evaluate its robust-
ness to external perturbations. Peterka [10] developed a postural
control model for upright stance during a persistent perturbation
(rotating support surface and/or visual surround) using a spec-
tral analysis system identification technique [10], [11]. How-
ever, the robustness of the postural control system to external
disturbances was also not studied in this work.

In this study, we define robustness of the human postural con-
trol system as the measure that quantifies how insensitive the
human postural control system is to perturbations. With this
definition, we will discuss the sensitivity function. The sensi-
tivity function describes how a system output is proportional to
various frequency contents of external perturbations. A greater
value of the sensitivity function at a given frequency implies
that it is more sensitive to disturbances having that frequency
component. A greater sensitivity also indicates a more sensitive
or less robust system that is closer to instability. The sensitivity
function of a closed-loop system can be calculated by examining
the output response of the system to a known input perturbation.
Even though gain and phase margins are popular measures for
robustness, the sensitivity function is a direct and more accu-
rate measure of robustness [6]. This is because gain and phase
margins depend upon the specific model of the control system.
Therefore, the reliability of the gain and phase margins as mea-
sures of robustness is affected by the accuracy of the control
model. In contrast, the sensitivity function defined in this paper
is independent of the specific postural control model, since it
relates only the output response to the input perturbation.

Previous studies of dynamic postural control have focused
mainly on using persistent perturbations, such as continuous
translations or rotations of a moving platform to perturb bal-
ance [12]–[15]. However, real-life loss of balance is typically
sudden, caused by impulses such as a slip while walking or
a bump while standing on a bus. Therefore, it is important to
understand how balance and postural control mechanisms re-
spond to unexpected and transient disturbances. Studies that
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have used impulse perturbations have not addressed subject re-
sponse from a control-systems perspective, but have rather fo-
cused on the whole-body and included how joint kinematics or
kinetics, muscle activation, and system dynamics are affected
by the disturbance (e.g., [16]–[21]). In this investigation, both
the impulse loading and impulse response control-theory par-
adigm are used to examine the postural control system and its
response to a mild backward tug at the pelvis.

In this study, we propose that the robustness of the postural
control system to a mild impulsive backward perturbation be as-
sessed using a new metric, 1/MaxSens. Robustness is the inverse
of sensitivity, i.e., a highly sensitive system has low robustness
to perturbation and vice versa. It should therefore be possible
to quantify a system’s robustness by determining the inverse of
the maximum value of the sensitivity function. The efficacy of
this assessment method was then evaluated using experimental
data.

II. METHODS

The sensitivity function of the postural control system to
a mild impulse force was determined using spectral analysis
system identification techniques. The robustness of the system
was quantified from the inverse of the maximum value of the
sensitivity function. This assessment method was evaluated
using experimental data from young, middle, and older healthy
adults. In the experiments, a single impulse force was applied
at the pelvis to produce a mild sway response about the ankle.
Additionally, the postural control system was modeled using a
controlled single link inverted pendulum in order to calculate
gain and phase margins of the modeled system. These more
traditional metrics of robustness were then compared to the
results calculated using the sensitivity function.

A. Determination of the Sensitivity Function

1) Frequency Response Function: Spectral analysis system
identification [10], [11] was used to compute the frequency
response function, which expresses the structural response of
the system to an input in the frequency domain. The input and
output signals of the model are the impulsive tug force and
body lean angle , respectively. Therefore, the sensitivity of
the body to the tug force is characterized by the closed-loop
transfer function (frequency response) from the input (tug
force) to the output (lean angle). We refer to this transfer
function as the sensitivity function [6], [10].

2) Sensitivity Function: To identify the system, the experi-
mental lean angle is first detrended to have zero mean using a
3 s window of quiet pre-tug data, which ended 0.3 s before the
peak tug force. This range is chosen to avoid influence of the
perturbation on the sway while still setting the zero value close
to when the perturbation occurred. Input and output data are then
truncated to a 5 s window (3 s before and 2 s after the peak tug
force). The windowed input and output data are converted to the
frequency domain using a fast Fourier transform algorithm with
Hamming windows to minimize leakage [22]. The auto power
spectrum of the input, , and the cross power spectrum
between the input and output signals, , are used to de-
termine the frequency response function, . The frequency

Fig. 1. Sample Nyquist plot illustrating a situation when gain margin and
phase margin measures incorrectly suggest a very robust and stable system.
Gain margin is infinity and phase margin is 90 , yet this system is very close
to instability because the open-loop transfer function (grey) nearly encircles
the critical point�1 as indicated by the small 1/MaxSens. (Encirclement of the
critical point indicates an unstable system.)

response function, and therefore the sensitivity function, is de-
fined as

(1)

where ranged over from 0.1–3 Hz. Frequencies were chosen
in this range since it was observed that there was no reliable
information above this value. The magnitude and phase of the
sensitivity function are computed by

(2)

and

(3)

where is the complex conjugate of and rep-
resents the absolute value of . Finally, magnitude and phase
plots of the sensitivity function were averaged over ten trials for
each subject.

3) Definition of Robustness (1/MaxSens): We propose a
metric based on the sensitivity function to quantify the ro-
bustness of the postural control system. More specifically,
the maximum value of the sensitivity function (MaxSens)
represents the amplification of the worst-case disturbance
(corresponding to the most sensitive frequency); therefore its
reciprocal serves as a good metric for robustness [6]. This
choice is apt for the robustness analysis of postural control
systems since disturbances with appreciable “worst-case”
frequency content are critical to the stability of a posture.
Additionally, this metric does not suffer from the disadvantages
of other popular measures of robustness such as gain and phase
margins. Generally, larger gain and phase margins suggest a
more robust system. However, large gain and phase margins do
not always guarantee robustness of the system. Fig. 1 shows an
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Fig. 2. Block diagram of the postural control system in the Laplace domain.
PD control with time delay, passive torque generator, and unity sensory feed-
back were used. Total corrective torque,� , is sum of torque from active
control, � , torque from passive control, � , and torque from the im-
pulsive perturbation, � .

example of a Nyquist plot with excellent gain and phase mar-
gins but where a relatively small combined perturbation of gain
and phase suffices to destabilize the system. The distance of the
Nyquist plot trajectory away from 1, which is equivalent to
1/MaxSens [6], directly represents the robustness. Therefore,
a high value of 1/MaxSens guarantees robustness. Also since
we are investigating robustness with respect to a tug, which
can be thought of as an approximation of an impulse function
whose spectrum spans the infinite range (on the real line), this
“worst-case disturbance” accounts for more possible cases than
persistent excitations whose frequencies are weighted around
their fundamental harmonics. This generality, in addition to the
fact that the causes for loss of balance are typically sudden,
reinforces our choice of impulse function for investigation.

B. Model-Based Gain and Phase Margins

1) Model Description: In order to compare our new measure
1/MaxSens of robustness with conventional measures of gain
and phase margins, it was necessary to develop a model of the
postural control system. We used a model consisting of a single
link inverted pendulum modulated by an active time-delayed
proportional-derivative (PD) controller, passive torque gener-
ator, and a negative unity feedback loop (Fig. 2).

It is assumed that balance after a mild perturbation is main-
tained using an ankle strategy, that is, postural movement was
predominantly controlled by ankle joint torque [23]. In this
model, the height of the body center of mass (COM) above the
ankle is represented by and is approximated as 0.559 of the
subject’s height [24]. Mass is total body mass. The body’s
moment of inertia about the ankle is given by . The
sensory system along with the control system (i.e., combined
vestibular, visual, and proprioceptive systems) is modeled by a
unit-gain feedback system as shown in Fig. 2.

Three torque components (perturbed, active, and passive) are
summed to create the corrective torque applied to the pendulum.
The input tug force, a backward impulsive force applied at
the waist of the subject, is transformed to a perturbation torque
through a scaling factor that represents the lever arm
of the tug force around the ankles. Active torque due to neural
control is modeled by a PD controller with proportional and
derivative gains and and time delay . PD-based control
models have been validated through experiments as described

in [10], [25], [26]. The time delay is introduced to account
for sensory transmission, signal processing in the brain, and
muscle activation delays [9], [10]. Passive torque due to muscu-
loskeletal stiffness and damping properties of the ankle complex
are modeled as a passive torque generator with stiffness and
damping ratio [10].

2) Open Loop Transfer Function: Gain and phase margins
are derived from the open-loop transfer function of the system.
Gain and phase margins represent how far the open-loop transfer
function is from 1. Negative gain margin or phase margin im-
plies instability. For our modeled system, the open-loop transfer
function (OLTF) is

(4)

where represents gravitational acceleration (9.81 ).
3) Model-Based Sensitivity Function and Curve Fitting:

Model parameters ( , , , , and ) were identified by
spectral system identification technique [11]. That is, model
parameters were identified such that the empirical sensitivity
function (1) was best approximated by a model-based sensi-
tivity function [(5)]. We defined the model-based sensitivity
function as a transfer function between the backward tug force
and lean angle. The model-based sensitivity function is given
by

(5)

The sensitivity function [(5)] was fit to the experimen-
tally-determined sensitivity function [(1)] using the MATLAB
optimization command fmincon (v2007a; The MathWorks,
Natick, MA) with initial values of the model parameters of

, , ,
, and . The optimization cost

function [(6)] was defined as the error between the magnitude
of the modeled sensitivity and experimental frequency response
function normalized by the magnitude of the experimental fre-
quency response function and summed over all 20 discretized
frequencies, logarithmically spaced from 0.1 to 3 Hz

(6)

Thus, with the model parameters derived, it is possible to
compute the gain and phase margins from the OLTF [(4)]. Gain
margin is defined as the magnitude of the OLTF (in dB) when the
phase is . Phase margin is defined as the sum of 180 and
the phase of the OLTF when its magnitude is 0 dB [8]. Smaller
gain and phase margins suggest that the system is near insta-
bility. Negative gain and phase margins mean that the system is
unstable.

C. Experimental Protocol

1) Subjects: Thirty (14 males, 16 females) subjects partici-
pated in this study. Subjects were divided into three groups of
ten subjects: young adults (YA), middle-aged adults (MA), and
older adults (OA). All other parameters of gender, weight and
height except age were matched as much as possible such that
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TABLE I
SUBJECT DEMOGRAPHICS, MEAN � S.E., FOR YOUNG ADULTS (YA),

MIDDLE-AGED ADULTS (MA), AND OLDER ADULTS (OA)

�-value from ANOVA examining effect of age

Fig. 3. (a) Experimental setup. The subject stood on a force plate, which
recorded the center of pressure. A load cell recorded the impulse force that was
transmitted to a belt located around the pelvis. The perturbation was created
by activating a mechanical trigger that released a 2.3 kg mass and spooled the
tether. After the mass fell, it became detached from the spool such that the
tether quickly slackened allowing the subject to readjust to an upright posture.
(b) Sample time series of impulsive tug force that illustrates the 5 s of analyzed
data. Positive force is in anterior direction.

there were no significant differences in these parameters except
age (Table I). All subjects were community-dwelling and had no
neurological, gait, or postural disorders. Informed consent was
given by all subjects and the study was approved by the univer-
sity institutional review board.

2) Experimental Procedure: Each subject performed twenty
30 s trials randomized between 10 quiet-standing and 10 per-
turbed trials. For all trials, the subject was instructed to stand on
a force plate (AMTI, model BP600900; Watertown, MA) in a
self-selected, comfortable stance with arms crossed at the chest
while looking ahead at a picture placed at eye level 3 m in front
of the subject. A tracing was made of the subject’s feet to en-
sure the same foot positioning for all trials. Subjects were in-
structed to stand quietly throughout the entire trial. During per-
turbed trials, a mild, quick-release, backward tug was applied
to the pelvis [27]. The test subject wore a belt that was attached
to a custom tug device via a loose tether such that normal pos-
tural sway was unhindered before and after the tug (Fig. 3). To
generate the impulse disturbance, a mechanical trigger was ac-
tivated to release a weight. After the brief tug, the mechanism
allowed the tether to quickly slacken, allowing the subject to ad-
just to an upright posture. Timing of the perturbation was ran-
domized between 5–20 s after the start of a trial so that the sub-
ject was not given cues as to if or when the tug would occur
during the trial. The perturbation magnitude was small enough
to only elicit a sway response about the ankles. Tug force was
measured from a load cell (PCB Piezotronics, model 208C02;
Depew, NY). Average tug force was 29.2 N 3.9 N with a du-
ration of 0.111 s 0.023 s. All forceplate data were sampled at
1000 Hz and were low-pass filtered at 10 Hz with a fourth-order,
zero-lag Butterworth filter. Forceplate data were used to com-
pute anterior–posterior center of pressure (AP COP). The COP

is the location of application of the ground reaction force vector
on the forceplate. Then, the AP position of the center of mass
(COM) was computed from AP COP and AP force data from
the forceplate using a modified gravity line projection algorithm
[28]. Even though there might be slight inaccuracies in calcula-
tions by the gravity line projection algorithm during the periods
when the impulsive perturbation is applied, these inaccuracies
can be ignored due to the small magnitude and short application
period of the impulsive force. Finally, the lean angle was com-
puted from the AP COM position and using the linearized
relationship, .

D. Supplemental Balance Parameters

Supplemental assessment of balance was done using quiet
stance postural sway measures of the COP. It has been shown
that postural sway becomes significantly greater in older adults
[2], [29], [30]. In this study, traditional and newer stochastic
measures of quiet stance postural sway were computed to
compare balance or postural stability characteristics of our test
groups. Since postural sway information provides insight into
the system response to internal perturbation, we assume that
greater postural sway implies reduced robustness.

1) Traditional Stabilometric Parameters of Quiet Stance:
COP data have typically been analyzed using measures that
describe the shape or speed of the trajectory. In this study, we
examined seventeen traditional (TRAD) parameters of COP
[2], [31]: standard deviation (SD), path length (PathLen), mean
sway velocity (MeanVel), mean frequency (MeanFreq), and
95% power frequency (Freq95) in the 1-D anterior–posterior
(AP) and medial–lateral (ML), and the 2-D radial (Rad) direc-
tions. We also examined the angular deviation of the principal
sway direction from the AP axis (AngDev) and total swept area
(TotalArea).

2) Stabilogram Diffusion Analysis for Quiet Stance: Collins
and De Luca [32] modeled the COP trajectory as a correlated
one or two dimensional random walk, and applied a stabilogram
diffusion analysis (SDA) to characterize short term (open loop)
and long term (closed loop) postural control mechanism. In our
study, we examined twelve parameters: short term (DS) and long
term (DL) diffusion coefficients, and short term (HS) and long
term (HL) scaling exponents in AP, ML, and Rad directions.

E. Statistical Analysis

One-way analysis of variance (ANOVA) was used to examine
whether 1/MaxSens, gain margin, phase margin, model param-
eters, TRAD and SDA parameters of quiet-stance sway were af-
fected by the factor of age (YA, MA, or OA). Tukey’s Honestly
Significant Differences (HSD) test was used for post hoc com-
parisons. The level of significance was set to . Statis-
tical analyses were run on SPSS (SPSS Inc., v15).

III. RESULTS

ANOVA test results for the newly proposed robustness
metric, 1/MaxSens, found significant age-related differences
(Table II, ). Mean and standard error values of
1/MaxSens for young adult (52.82 0.73 dB) and middle-aged
adult (53.81 0.93 dB) groups were similar to each other;
however, 1/MaxSens for older adults (48.15 1.23 dB) was
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TABLE II
MODEL-BASED MEASURES, MEAN AND � S.E., FOR YOUNG ADULTS (YA),

MIDDLE-AGED ADULTS (MA), AND OLDER ADULTS (OA)

�-value from ANOVA examining effect of age
YA and OA are significantly different, based on Tukey HSD post-hoc test
MA and OA are significantly different, based on Tukey HSD post-hoc test

TABLE III
STATISTICALLY SIGNIFICANT TRADITIONAL (TRAD) AND STABILOGRAM

DIFFUSION ANALYSIS PARAMETERS (SDA) STABILOMETRIC PARAMETERS

OF QUIET-STANCE SWAY, MEAN AND � S.E., FOR YOUNG ADULTS (YA),
MIDDLE-AGED ADULTS (MA), AND OLDER ADULTS (OA)

�-value from ANOVA examining effect of age
YA and OA are significantly different, based on Tukey HSD post-hoc test
MA and OA are significantly different, based on Tukey HSD post-hoc test

significantly smaller. Post hoc tests revealed statistically sig-
nificant differences between YA and OA, and MA and OA, but
not YA and MA. This result suggests that the robustness of
the OA group to mild perturbations was significantly reduced
compared to both YA and MA, while there was no difference
in robustness between YA and MA. No statistically significant
differences due to age, however, were found for tra-
ditional robustness measures of gain and phase margins. Still,
values of these metrics for the older adult group suggest slightly
reduced postural control performance compared to young and
middle-aged adults, i.e., smaller values for gain margin and
phase margin (Table II). Statistically significant differences

in supplemental quiet-stance (TRAD and SDA)
balance parameters were found between age groups (Table III).
Significant differences in parameter values were found between
YA and OA, and MA and OA, but not YA and MA. These
results indicated that OA swayed significantly farther and faster
than YA and MA, especially in the anterior–posterior and radial
directions.

The mathematical model of a single link inverted pendulum
with PD controller, time delay, passive torque generator, and

Fig. 4. Example of Bode plots of the frequency response function (FRF) from
experimental data of a young adult ���, sensitivity function (solid line) which
best fit the FRF. Error bars represent one standard deviation. Experimental data
are averaged over ten FRF of a single subject.

unity sensory feedback was found to represent the human pos-
tural control system quite well (Fig. 4). There were no statis-
tically significant differences due to age in model parameters

.

IV. DISCUSSION

We proposed that the robustness of the system could be quan-
tified using the sensitivity function; specifically the reciprocal of
peak magnitude of the sensitivity function (1/MaxSens). Since
robustness has been defined as a measure that quantifies how in-
sensitive the human postural control system is to perturbations,
the sensitivity function which is a frequency response to an im-
pulsive perturbation could serve as a robustness quantifier. Thus,
a more robust system has a greater value of 1/MaxSens. To test
this idea, we conducted a cross-sectional study involving young,
middle-aged, and older adults. Results from the supplemental
balance measures indicated that there were significant differ-
ences in quiet-stance postural sway and stability between the
older adult group and both the young and middle-aged groups
(Table III). Our proposed metric of robustness, 1/MaxSens, de-
tected similar age-related differences, such that OA also demon-
strated less robustness to postural disturbances than YA and MA
(Table II).

Model-based gain and phase margins are the most frequently
used metrics for measuring robustness of a system. OA tended
to have slightly smaller gain and phase margins compared to
YA and MA; however, these were not significantly different
( for gain margin and for phase margin).
1/MaxSens, however, indicated statistically significant differ-
ences between OA and both YA and MA , demon-
strating that 1/MaxSens is a better discriminator of age-related
changes. This suggests that the sensitivity function, and more
specifically the 1/MaxSens value, is a better measure for ro-
bustness of the postural control system to mild perturbations.
It should be noted that the above conclusion is validate only for
models that assume that all the subjects used an ankle strategy
to control posture. Since it has been suggested that older adults
may use a hip strategy more often than young populations [33],
gain and phase margins could possibly provide more meaningful
results in measuring robustness of the human postural control
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system when a two-link model of hip strategy is used. However,
given the assumption of ankle strategy, even though both gain
and phase margins and 1/MaxSens can be used for robustness
measures, 1/MaxSens could be a better robustness measure in
the sense that postural control systems are closed-loop systems
and 1/MaxSens can capture the worst-case margin. Furthermore,
in the context of the definition of robustness of the human pos-
tural control system in this paper, 1/MaxSens may be a better
robustness measure.

In the current study, we additionally introduced a mathemat-
ical model of postural control system in order to compute gain
and phase margin. We represented the body and postural control
system with a single link inverted pendulum modulated by an
active time-delayed proportional-derivative (PD) controller,
passive torque generator, and negative unity sensory feedback
loop (Fig. 2). In this model, we assume that the body responded
to the perturbation as a single link inverted pendulum. The
impulse force in the current study is of a small magnitude in
order to limit the amount of hip and knee flexion used when
responding to the perturbation; therefore, it is assumed that the
subject uses an ankle strategy and rotates only about the ankles.
A number of studies have used PD controllers and found that
a PD controller can represent the postural control system quite
well [9], [10], [25], [26]. Although our perturbation differed
from those conditions, this model appears to be a good approx-
imation for representing the behavior of the postural control
system during the response to an impulse disturbance (Fig. 4).
The model parameters found in this study (Table II) were in
good agreement with previous studies that used time-delayed
PD controlled models of the postural control system. Peterka
[10] and Masani et al. [9] found similar values for the con-
troller parameters ( : 570–1200 and 750–1150 N m/rad,

: 170–515 and 300–550 N m s/rad, and : 140–250 and
75–135 ms, respectively). Among these parameters, we found
that was the most significantly correlated with
1/MaxSens suggesting that angular velocity information plays
important roles for maintaining robustness of the human up-
right stance using ankle strategy. This result is supported from
the previous study [26] that body sway velocity information is
important in controlling ankle extensor during quiet stance.
was also significantly correlated with 1/MaxSens
implying that time delay can significantly affect robustness of
the human postural control system.

There has been limited research investigating how the pos-
tural control system responds to an impulsive perturbation.
Previous studies using impulse perturbations have focused on
whole-body kinematics, muscle activation, and the sway-to-step
transition [16]–[21], [34]. We addressed these deficiencies by
using a backward, quick-release tug at the waist to explore the
AP postural sway response to an impulse perturbation.

Recent experimental studies report that postural sway be-
havior in the medial–lateral (ML) direction may be a better indi-
cator of fall risk than the anterior–posterior (AP) direction (for
review see [35]). Our study applied system identification of the
postural control system only in the AP direction and proposed
1/MaxSens to quantify robustness of the system to the external
perturbation. The same methodology can be applied to assess-
ments in the ML direction. Future studies comparing 1/MaxSens

values and other control parameters of postural control systems
in both AP and ML directions may help improve understanding
about why the ML direction may be a better indicator of fall risk
compared to the AP direction.

In conclusion, a metric for measuring robustness of the
postural control system 1/MaxSens is proposed. 1/MaxSens
was derived from the sensitivity function which is actually
the frequency response function. Greater values of 1/MaxSens
suggest greater system robustness or less system sensitivity to
an external perturbation. Age-related changes in the postural
control system were detected by 1/MaxSens. This finding
was verified by supplemental balance parameters; however,
model-based metrics, gain and phase margin, failed to detect
differences. Importantly, 1/MaxSens provides a measure of
robustness of a system without need for developing compu-
tational models of the system. Therefore, regardless of the
structure of the controller in the feedback loop, the closed-loop
sensitivity function can be derived experimentally from the
frequency response function. These features make 1/MaxSens
an easy to use and more effective robustness measure.
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