

Effect of material of the 3D printed foot on ankle kinematics/kinetics and toe joint bending during prosthetic walking

Woolim Hong¹, Huijin Um², Heonsu Kim², Haksung Kim^{2,3}, and Pilwon Hur¹

 1 Department of Mechanical Engineering $_{USA}^{Texas}$ A&M University, College Station, TX,

²Department of Mechanical Engineering, Hanyang University, Seoul, South Korea ³Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea

Introduction

Powered toe joint¹

Toe joint with interchangeable springs²

3D printed prosthetic foot³

Research focus

 How the material of 3D printed foot affects the ankle kinematics/kinetic during a prosthetic walking

 How the material of 3D printed foot affects the toe joint bending during a prosthetic walking

Foot structure and material proposal

Foot structure and material combination³

	Structure	Material	Weight
Green foot (A)	Re-entrant structure	ABS	510 g
Black foot (B)	Re-entrant honeycomb structure with BZ	Onyx	540 g

Experimental protocol

- A treadmill walking test at subject's preferred speed (0.60 m/s)
- A healthy young subject (male, 31 yrs., 1.70 m, 70 kg)
- Two different feet (ABS Vs. Onyx) are used for the comparison.
- Control framework
 - Ankle: Impedance control
 - Knee: Impedance control (stance)

PD control (swing)

Results: ankle joint kinematics/kinetics

- Dorsiflexion (Fig. A): onyx foot < ABS foot
- Joint torque (Fig. B), power (Fig. C): onyx foot < ABS foot

Results: toe flexion/extension

- Toe flexion: onyx foot (2.46°) > ABS foot (0.74°)
- Both flexions are still too small compared to the simulation result $(15^{\circ})^3$.

Results: toe flexion/extension

- According to the results, the ABS foot has larger dorsiflexion, torque, and power.
- As the toe joint stiffness is increased, the ankle dorsiflexion, torque, and power are increased².

Results: ankle joint kinematics/kinetics

- Human data is from a faster walking speed (0.80 m/s)⁴.
- Both feet show smaller dorsiflexion and earlier push-off.
- The ankle torque and power are smaller due to the restricted torque limit of the actuator on the prosthesis.

Conclusion

- The onyx foot showed relatively significant compliance on the toe joint.
- The proposed foot is substantially lighter (540 g) compared to the previous feet $(1.23^{2}.47 \text{ kg})^{1,2}$.
- Using the new material (e.g., onyx) can be a good starting point for the new prosthetic foot design.

Limitations

- Compared to the human, a toe bending of the onyx foot is still small.
- Due to the small toe bending, the effect of the proposed foot under the large toe deformation is not investigated.

Future works

- More compliant toe joints should be tested to investigate the effect of the toe joint.
- Maximize the biomechanical benefits of 3D printed foot with a realistic loading condition

References

- [1] J. Zhu, Q. Wang, and L. Wang, IEEE Transactions on Industrial Electronics, Vol.61, No.9, p.4797-4807, 2014
- [2] E. C. Honert, G. Bastas, and K. E. Zelik, *Bioinspiration & Biomimetics*, Vol.13, No.6, p.066007, 2018
- [3] H. Kim, H. Um, W. Hong, H. Kim, and P. Hur, American Society of Biomechanics (ASB), 2020
- [4] K. R. Embry, D. J. Villarreal, R. L. Macaluso, and R. D. Gregg, *IEEE Transactions on neural systems and rehabilitation engineering*, Vol.26, No.12, p.2342-2350, 2018

Thank you for watching!

